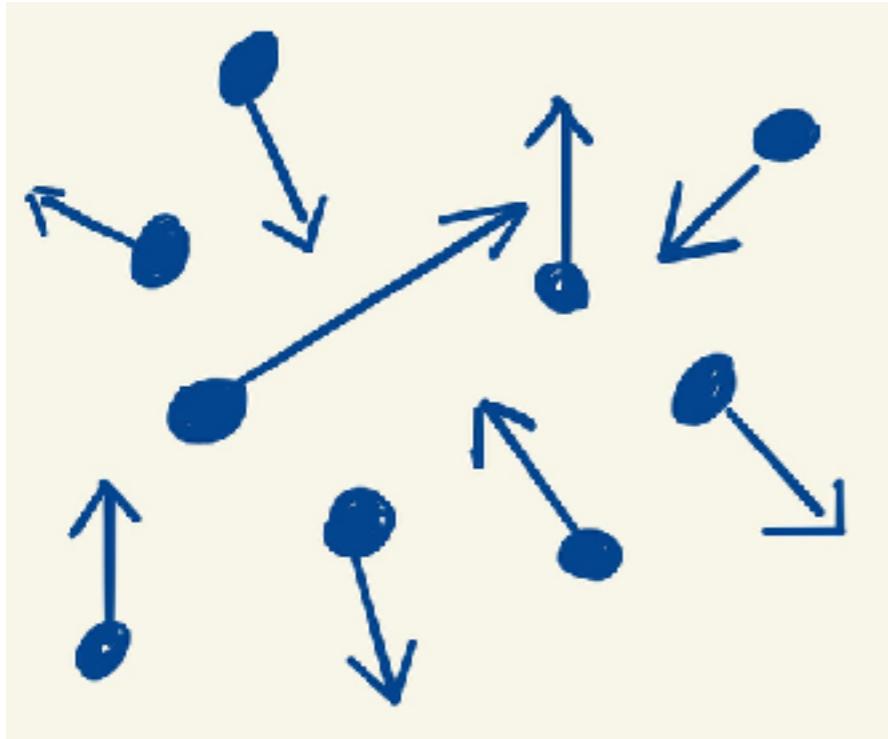


On the
Effective Field Theory of
Large Scale Structure

What is a fluid?



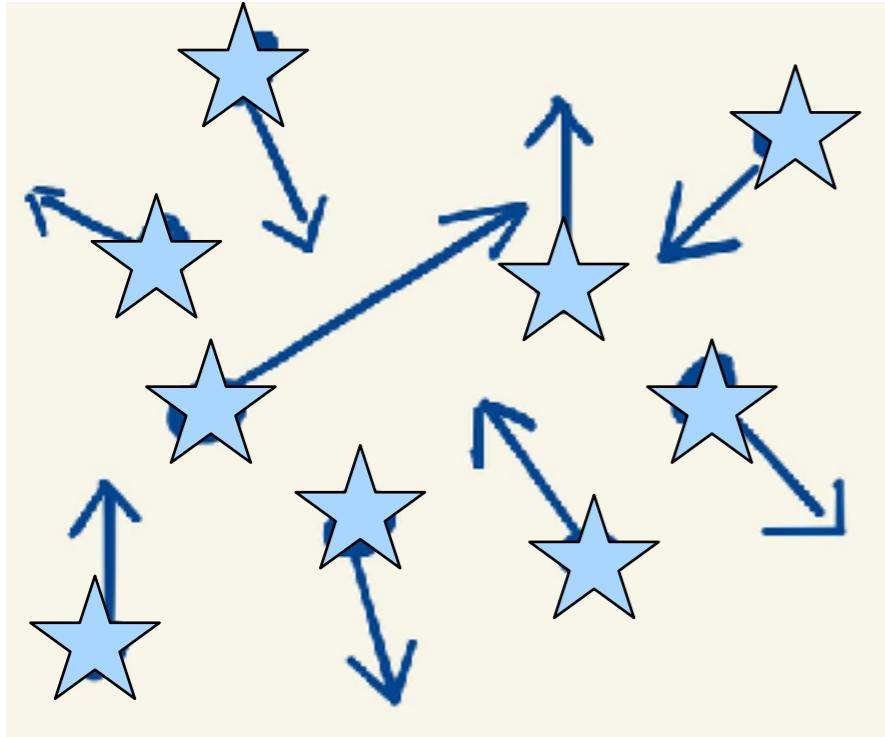
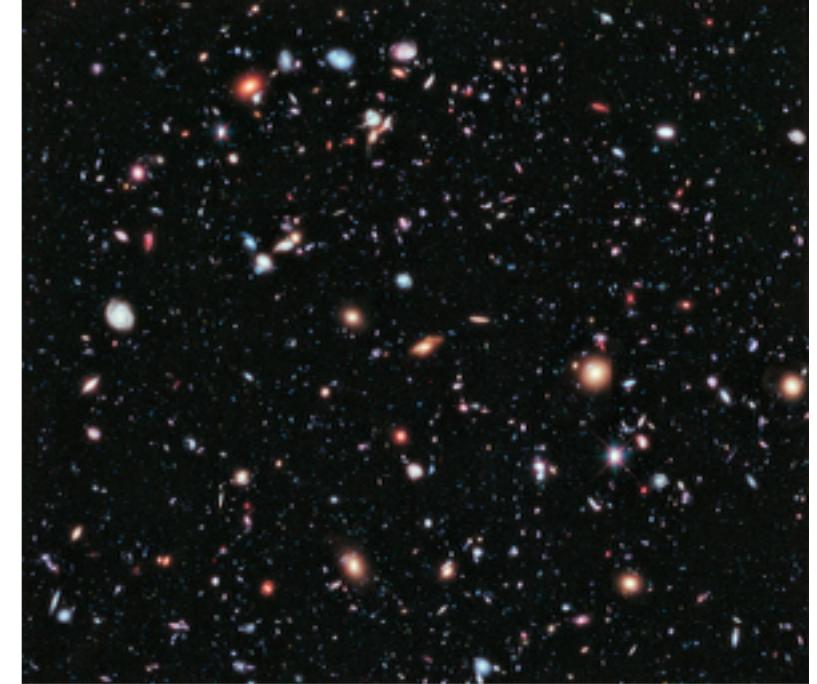
wikipedia: credit
National Oceanic and Atmospheric
Administration/
Department of Commerce

$$\partial_t \rho_\ell + \partial_i (\rho_\ell v_\ell^i) = 0$$

$$\partial_t v_\ell^i + v_\ell^j \partial_j v_\ell^i + \frac{1}{\rho_\ell} \partial_i p_\ell = \text{viscous terms}$$

- From short to long
- The resulting equations are simpler
- Description arbitrarily accurate
 - construction can be made without knowing the nature of the particles.
 - short distance physics appears as a non trivial stress tensor for the long-distance fluid

Do the same for matter in our Universe



credit NASA

with Baumann, Nicolis and Zaldarriaga **JCAP 2012**
with Carrasco and Hertzberg **JHEP 2012**

$$\nabla^2 \Phi_\ell = H^2 (\delta \rho_\ell / \rho)$$
$$\partial_t \rho_\ell + H \rho_\ell + \partial_i (\rho_\ell v_\ell^i) = 0$$
$$\partial_t v_\ell^i + v_\ell^j \partial_j v_\ell^i + \partial_i \Phi_\ell = \partial_j \tau^{ij}$$

- From short to long
- The resulting equations are simpler
- Description arbitrarily accurate
 - construction can be made without knowing the nature of the particles.
 - short distance physics appears as a non trivial stress tensor for the long-distance fluid

$$\tau_{ij} \sim \delta_{ij} \rho_{\text{short}} (v_{\text{short}}^2 + \Phi_{\text{short}})$$

Dealing with the Effective Stress Tensor

- For long distances: expectation value over short modes (integrate them out)

$$\langle \tau_{ij}(\vec{x}, t) \rangle_{\text{long fixed}} = f_{\text{very complicated}} \left(\{H, \Omega_m, \dots, m_{\text{dm}}, \dots, \rho_\ell(x)\}_{\text{past light cone}} \right)$$

At long wavelengths \downarrow Taylor Expansion

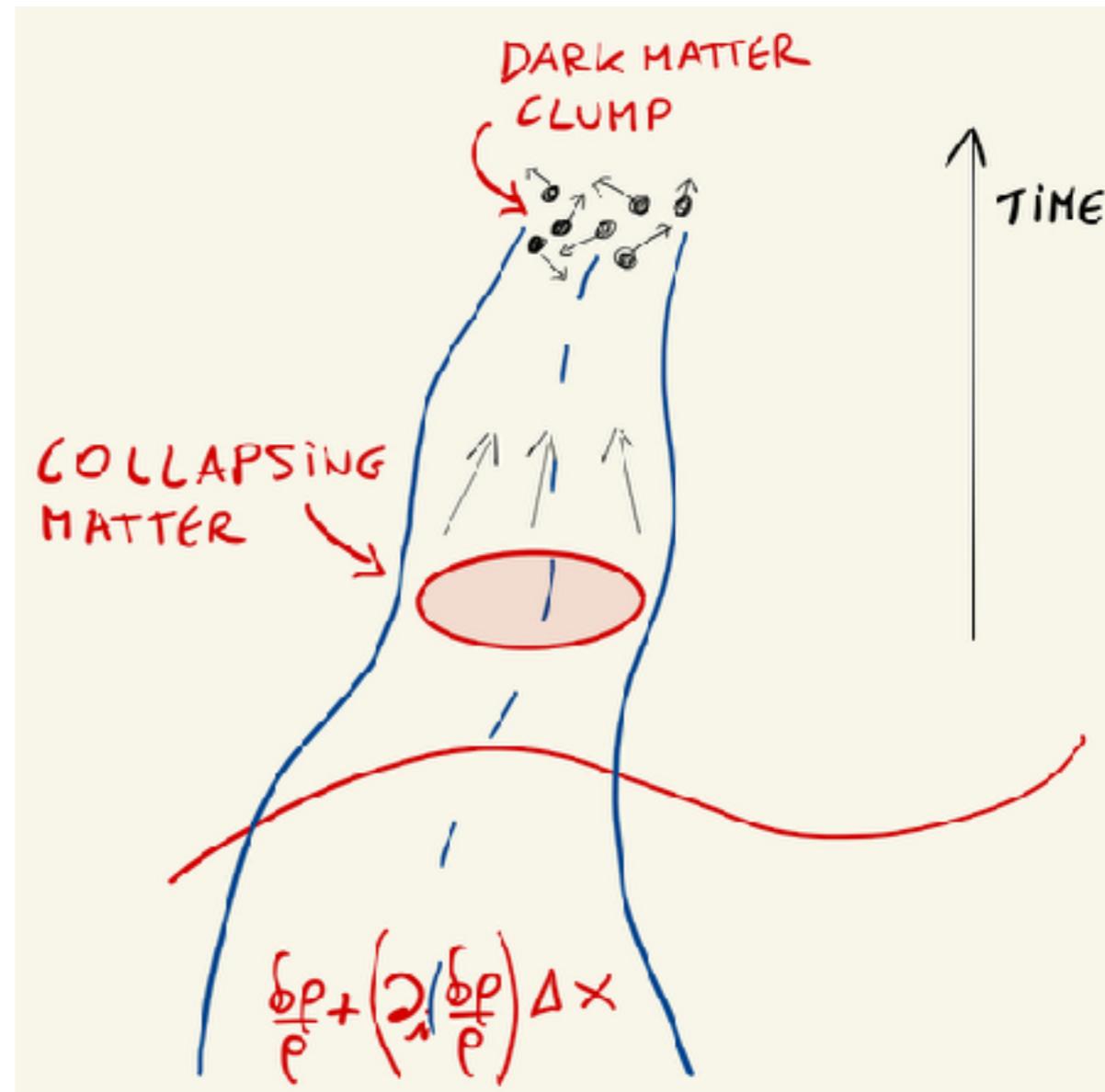
$$\langle \tau_{ij}(\vec{x}, t) \rangle_{\text{long fixed}} = \int^t dt' \left[c(t, t') \frac{\delta \rho_\ell}{\rho}(\vec{x}_{\text{fl}}, t') + \mathcal{O}((\delta \rho_\ell / \rho)^2) \right]$$

- Equations with only long-modes

$$\partial_t v_\ell^i + v_\ell^j \partial_j v_\ell^i + \partial_i \Phi_\ell = \partial_j \tau^{ij}$$

$$\tau_{ij} \sim \delta \rho_\ell / \rho + \dots$$

every term allowed by symmetries



- each term contributes as factor of

$$\frac{\delta \rho_\ell}{\rho} \sim \frac{k}{k_{\text{NL}}} \ll 1$$

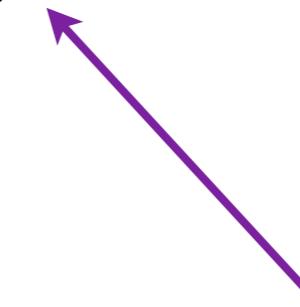
Perturbation Theory within the EFT

- In the EFT we can solve iteratively $\delta_\ell, v_\ell, \Phi_\ell \ll 1$, where $\delta_\ell = \frac{\delta\rho_\ell}{\rho}$

$$\nabla^2 \Phi_\ell = H^2 (\delta\rho_\ell / \rho)$$

$$\partial_t \rho_\ell + H \rho_\ell + \partial_i (\rho_\ell v_\ell^i) = 0$$

$$\partial_t v_\ell^i + \cancel{v_\ell^j \partial_j v_\ell^i} + \partial_i \Phi_\ell = \partial_j \tau^{ij}$$


$$\tau_{ij} \sim \delta\rho_\ell / \rho + \dots$$

- Two scales:

$$k \text{ [Mean Free Path Scale]} \sim k \left[\left(\frac{\delta\rho}{\rho} \right) \sim 1 \right] \sim k_{\text{NL}}$$

Perturbation Theory within the EFT

- Solve iteratively some non-linear eq. $\delta_\ell = \delta_\ell^{(1)} + \delta_\ell^{(2)} + \dots \ll 1$

- Second order:

$$\partial^2 \delta_\ell^{(2)} = \left(\delta_\ell^{(1)} \right)^2 \Rightarrow \delta_\ell^{(2)}(x) = \int d^4x' \text{ Greens}(x, x') \left(\delta_\ell^{(1)}(x') \right)^2$$

- Compute observable:

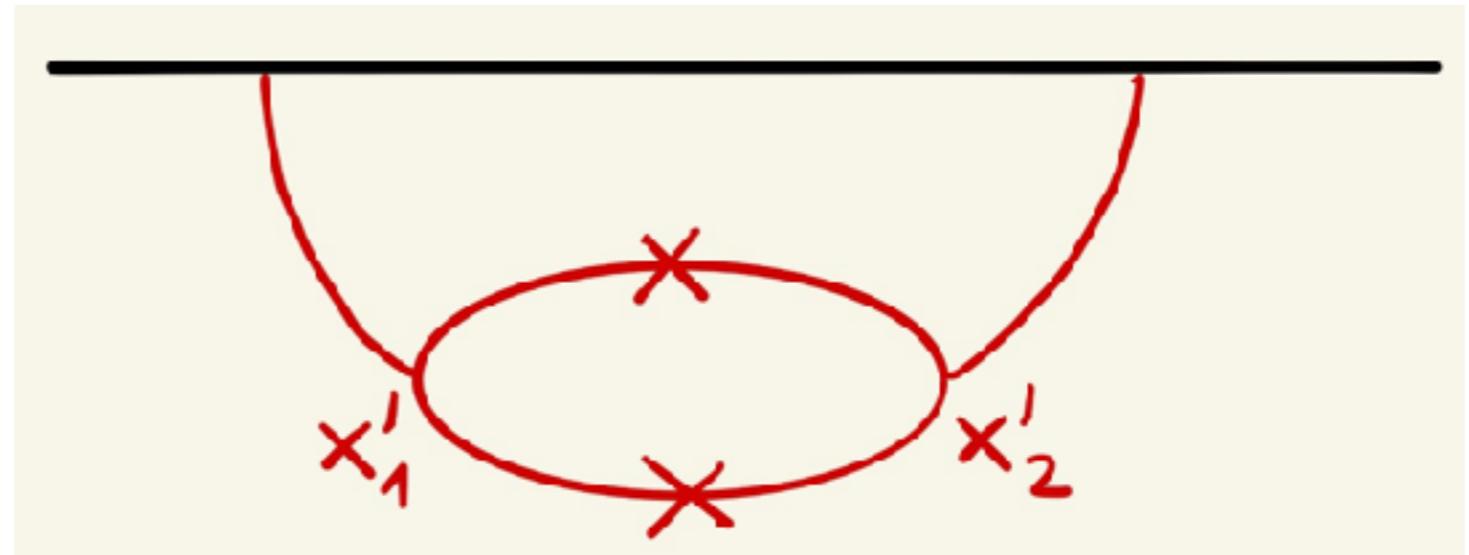
$$\langle \delta_\ell(x_1) \delta_\ell(x_2) \rangle \supset \langle \delta_\ell^{(2)}(x_1) \delta_\ell^{(2)}(x_2) \rangle \sim \int d^4x'_1 d^4x'_2 (\text{Green's})^2 \langle \delta_\ell^{(1)}(x'_1)^2 \delta_\ell^{(1)}(x'_2)^2 \rangle$$

- We obtain Feynman diagrams

- Sensitive to short distance

$$x'_2 \rightarrow x'_1$$

- Need to add counterterms from $\tau_{ij} \supset c_s^2 \delta_\ell$ to correct
- Loops and renormalization applied to galaxies



Perturbation Theory within the EFT

Pajer and Zaldarriaga 2013

- Regularization and renormalization of loops (no-scale universe) $P_{11}(k) = \frac{1}{k_{\text{NL}}^3} \left(\frac{k}{k_{\text{NL}}}\right)^n$

– evaluate with cutoff:

$$P_{1\text{-loop}} = c_1^\Lambda \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}}$$

\uparrow

$$\left\langle \left(\frac{\delta\rho}{\rho}\right)_k^2 \right\rangle$$

\nearrow

– divergence (we extrapolated the equations where they were not valid anymore)

Perturbation Theory within the EFT

Pajer and Zaldarriaga 2013

- Regularization and renormalization of loops (no-scale universe) $P_{11}(k) = \frac{1}{k_{\text{NL}}^3} \left(\frac{k}{k_{\text{NL}}}\right)^n$

– evaluate with cutoff:

$$P_{1\text{-loop}} = c_1^\Lambda \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}}$$

$\nearrow \left\langle \left(\frac{\delta\rho}{\rho}\right)_k^2 \right\rangle$

- divergence (we extrapolated the equations where they were not valid anymore)
- we need to add effect of stress tensor $\tau_{ij} \supset c_s^2 \delta_\ell$

$$P_{11, c_s} = c_s \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} \quad , \text{ choose} \quad c_s = -c_1^\Lambda \left(\frac{\Lambda}{k_{\text{NL}}}\right) + c_{s, \text{finite}}$$

$$\Rightarrow P_{1\text{-loop}} + P_{11, c_s} = c_{s, \text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}}$$

– we just re-derived renormalization

– after renormalization, result is finite and small for $\frac{k}{k_{\text{NL}}} \ll 1$

Perturbation Theory within the EFT

Pajer and Zaldarriaga 2013

- Regularization and renormalization of loops (no-scale universe) $P_{11}(k) = \frac{1}{k_{\text{NL}}^3} \left(\frac{k}{k_{\text{NL}}}\right)^n$

– evaluate with cutoff:

$$P_{1\text{-loop}} = c_1^\Lambda \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}}$$

$$\left\langle \left(\frac{\delta\rho}{\rho}\right)_k^2 \right\rangle$$

- divergence (we extrapolated the equations where they were not valid anymore)
- we need to add effect of stress tensor $\tau_{ij} \supset c_s^2 \delta_\ell$

$$P_{11, c_s} = c_s \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} \quad \text{choose} \quad c_s = -c_1^\Lambda \left(\frac{\Lambda}{k_{\text{NL}}}\right) + c_{s, \text{finite}}$$

$$\Rightarrow P_{1\text{-loop}} + P_{11, c_s} = c_{s, \text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}}$$

– we just re-derived renormalization

– after renormalization, result is finite and small for $\frac{k}{k_{\text{NL}}} \ll 1$

Perturbation Theory within the EFT

Pajer and Zaldarriaga 2013

- Regularization and renormalization of loops (no-scale universe) $P_{11}(k) = \frac{1}{k_{\text{NL}}^3} \left(\frac{k}{k_{\text{NL}}}\right)^n$

– evaluate with cutoff:

$$P_{1\text{-loop}} = c_1^\Lambda \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}}$$

$\nearrow \left\langle \left(\frac{\delta\rho}{\rho}\right)_k^2 \right\rangle$

- divergence (we extrapolated the equations where they were not valid anymore)
- we need to add effect of stress tensor $\tau_{ij} \supset c_s^2 \delta_\ell$

$$P_{11, c_s} = c_s \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} \quad , \text{ choose} \quad c_s = -c_1^\Lambda \left(\frac{\Lambda}{k_{\text{NL}}}\right) + c_{s, \text{finite}}$$

$$\Rightarrow P_{1\text{-loop}} + P_{11, c_s} = c_{s, \text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}}$$

– we just re-derived renormalization

– after renormalization, result is finite and small for $\frac{k}{k_{\text{NL}}} \ll 1$

.... lots of work

Galaxy Statistics

Senatore **1406**
with Lewandowsky *et al* **1512**
with Perko *et al.* **1610**

Galaxies in the EFTofLSS

Senatore 1406

- On galaxies, a long history before us, summarized by McDonald, Roy 2010 .
 - Senatore 1406 provided first complete parametrization.
- Nature of Galaxies is very complicated

$$n_{\text{gal}}(x) = f_{\text{very complicated}} \left(\{H, \Omega_m, \dots, m_e, g_{ew}, \dots, \rho(x)\}_{\text{past light cone}} \right)$$

Galaxies in the EFTofLSS

Senatore 1406

$$n_{\text{gal}}(x) = f_{\text{very complicated}} \left(\{H, \Omega_m, \dots, m_e, g_{ew}, \dots, \rho(x)\}_{\text{past light cone}} \right)$$

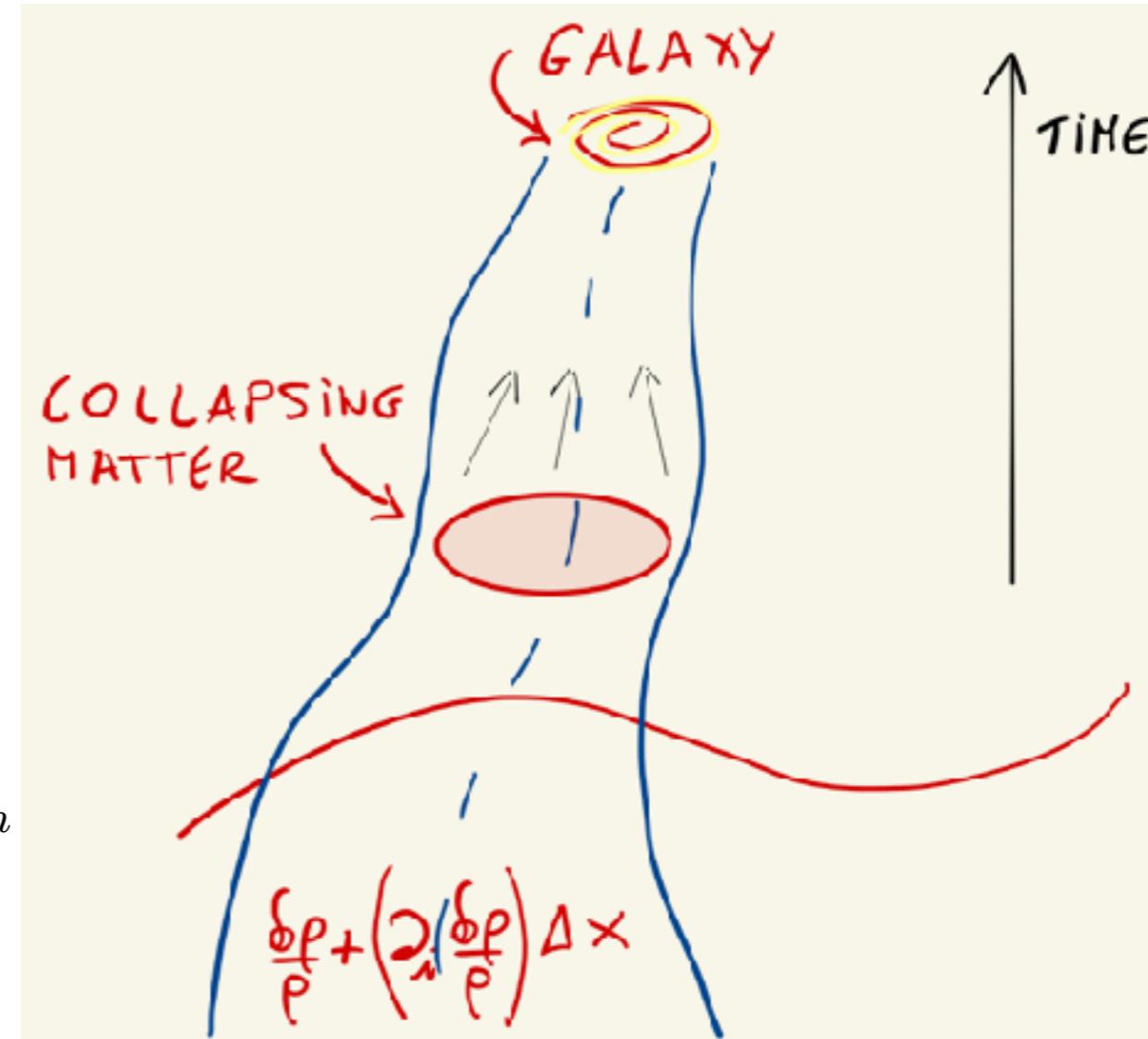
At long wavelengths \downarrow Taylor Expansion

$$\left(\frac{\delta n}{n} \right)_{\text{gal},\ell}(x) \sim \int^t dt' \left[c(t, t') \left(\frac{\delta \rho}{\rho} \right) (\vec{x}_{\text{fl}}, t') + \dots \right]$$

- all terms allowed by symmetries
- all physical effects included

–e.g. assembly bias

$$\begin{aligned} \left\langle \left(\frac{\delta n}{n} \right)_{\text{gal},\ell}(x) \left(\frac{\delta n}{n} \right)_{\text{gal},\ell}(y) \right\rangle &= \\ &= \sum_n \text{Coeff}_n \cdot \langle \text{matter correlation function} \rangle_n \end{aligned}$$



It is familiar in dielectric E&M

- Polarizability:

$$\vec{P}(\omega) = \chi(\omega) \vec{E}(\omega) \quad \Rightarrow \quad \vec{P}(t) = \int dt' \chi(t - t') \vec{E}(t')$$

- and in fact, also the EFT of Non-Relativistic binaries Goldberger and Rothstein **2004** is non-local in time.

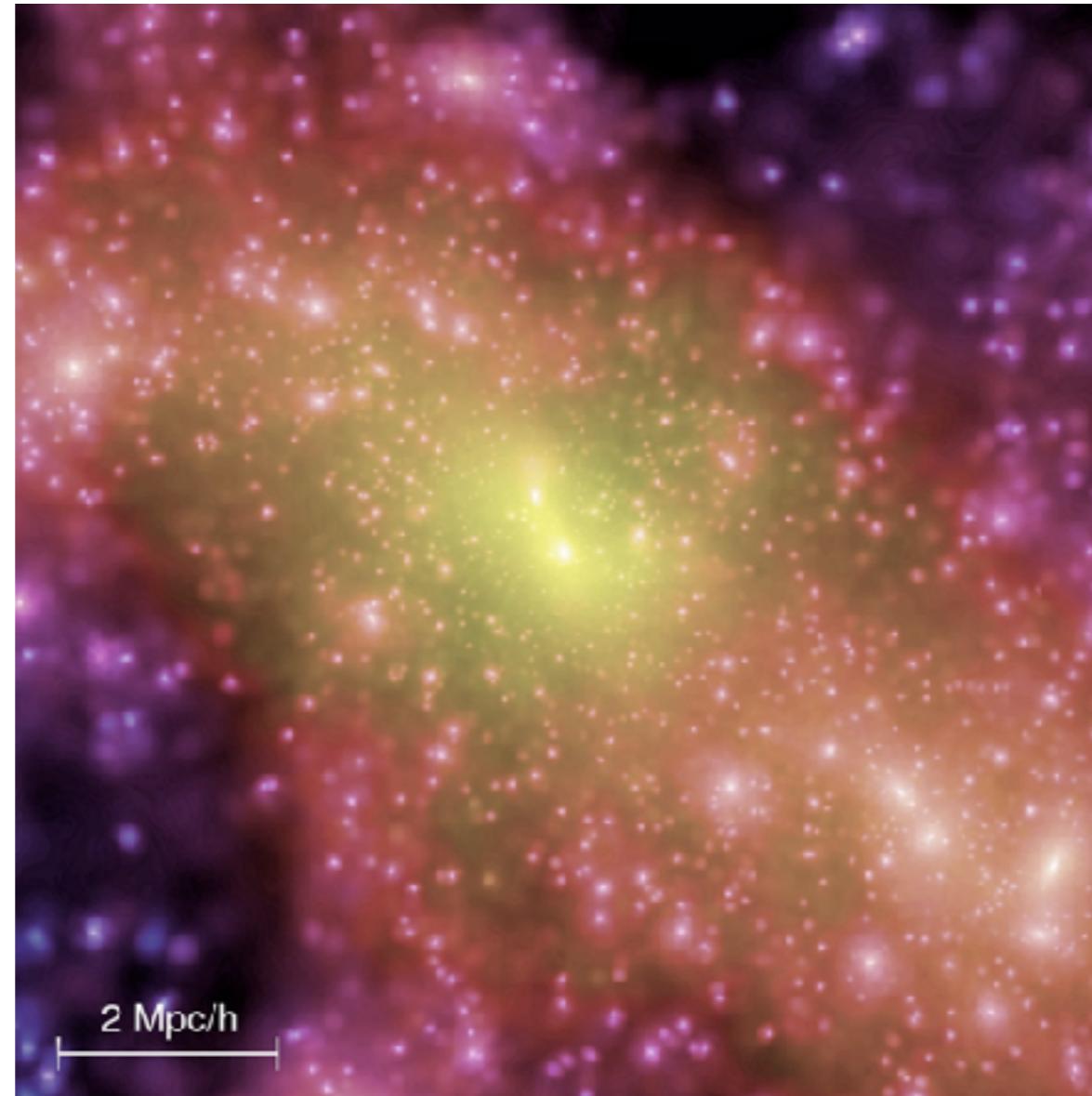
Consequences of non-locality in time

with Carrasco, Foreman, Green **1310**
Senatore **1406**

- The EFT is non-local in time $\Rightarrow \langle \tau_{ij}(\vec{x}, t) \rangle_{\text{long fixed}} \sim \int^t dt' K(t, t') \delta\rho(\vec{x}_{\text{fl}}, t') + \dots$
- Perturbative Structure has a decoupled structure
$$\delta\rho(x, t') = D(t')\delta\rho(\vec{x})^{(1)} + D(t')^2\delta\rho(\vec{x})^{(2)} + \dots$$
- A few coefficients for each counterterm:
$$\Rightarrow \langle \tau_{ij}(\vec{x}, t) \rangle_{\text{long fixed}} \sim \int^t dt' K(t, t') [D(t')\delta\rho(\vec{x})^{(1)} + D(t')^2\delta\rho(\vec{x})^{(2)} + \dots] \simeq c_1(t)\delta\rho(\vec{x})^{(1)} + c_2(t)\delta\rho(\vec{x})^{(2)} + \dots$$
- where $c_i(t) = \int dt' K(t, t') D(t')^i$
- Difference:
 - Time-Local QFT: $c_1(t) [\delta\rho(\vec{x})^{(1)} + \delta\rho(\vec{x})^{(2)} + \dots]$
 - Non-Time-Local QFT: $c_1(t)\delta\rho(\vec{x})^{(1)} + c_2(t)\delta\rho(\vec{x})^{(2)} + \dots$
- More terms, but not a disaster

Baryonic effects

- When stars explode, baryons behave differently than dark matter



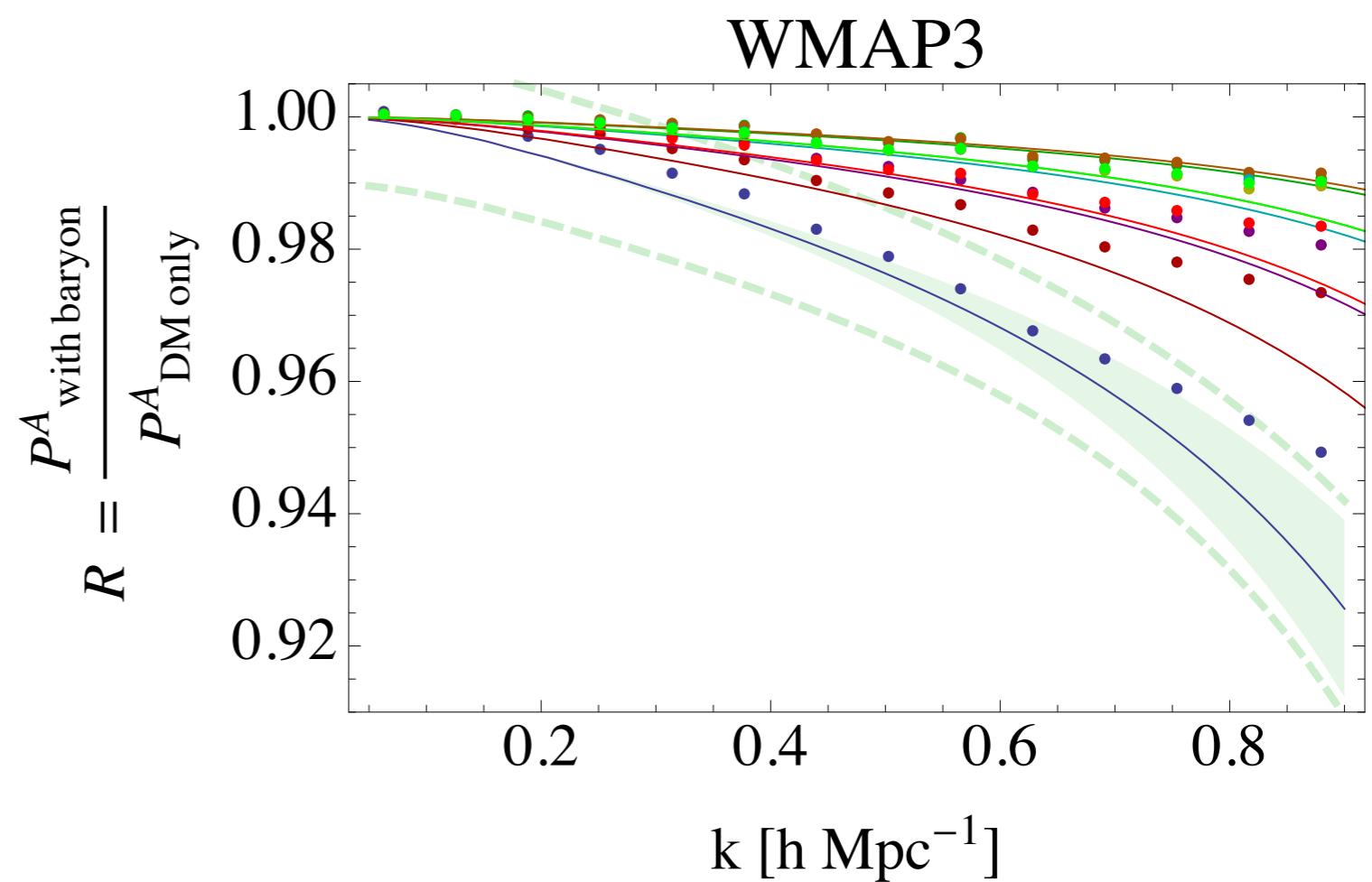
credit: Millenium Simulation,
Springel *et al.* (2005)

- They cannot be reliably simulated due to large range of scales

Baryons

- Idea for EFT for dark matter:
 - Dark Matter moves $1/k_{\text{NL}} \sim 10 \text{ Mpc}$
 - \Rightarrow an effective fluid-like system with mean free path $\sim 1/k_{\text{NL}}$
- Baryons heat due to star formation, but move the same:
 - Universe with CDM+Baryons \Rightarrow EFTofLSS with 2 species

$$\Delta P_b(k) \simeq c_*^2 \left(\frac{k}{k_{\text{NL}}} \right)^2 P_{11}^A(k)$$



Baryons

- EFT Equations:

Continuity: $\dot{\rho}_\sigma + 3H\rho_\sigma + a^{-1}\partial_i\pi_\sigma^i = 0$,

Momentum: $\dot{\pi}_c^i + 4H\pi_c^i + a^{-1}\partial_j\left(\frac{\pi_c^i\pi_c^j}{\rho_c}\right) + a^{-1}\rho_c\partial_i\Phi = +a^{-1}\gamma^i - a^{-1}\partial_j\tau_c^{ij}$,

$\dot{\pi}_b^i + 4H\pi_b^i + a^{-1}\partial_j\left(\frac{\pi_b^i\pi_b^j}{\rho_b}\right) + a^{-1}\rho_b\partial_i\Phi = -a^{-1}\gamma^i - a^{-1}\partial_j\tau_b^{ij}$.

Baryons

- EFT Equations:

Continuity: $\dot{\rho}_\sigma + 3H\rho_\sigma + a^{-1}\partial_i\pi_\sigma^i = 0$,

Momentum: $\dot{\pi}_c^i + 4H\pi_c^i + a^{-1}\partial_j\left(\frac{\pi_c^i\pi_c^j}{\rho_c}\right) + a^{-1}\rho_c\partial_i\Phi = +a^{-1}\gamma^i - a^{-1}\partial_j\tau_c^{ij}$,

$\dot{\pi}_b^i + 4H\pi_b^i + a^{-1}\partial_j\left(\frac{\pi_b^i\pi_b^j}{\rho_b}\right) + a^{-1}\rho_b\partial_i\Phi = -a^{-1}\gamma^i - a^{-1}\partial_j\tau_b^{ij}$.

dynamical friction

effective force

- Counterterms:

$$\begin{aligned}
 \partial_i(\partial\tau_\rho)_c^i - \partial_i(\gamma)_c^i = & -g w_b a H \partial_i v_I^i + 9(2\pi)H^2 \left\{ \frac{c_{c,g}^2}{k_{\text{NL}}^2} (w_c \partial^2 \delta_c + w_b \partial^2 \delta_b) + \frac{c_{c,v}^2}{k_{\text{NL}}^2} \partial^2 \delta_c \right. \\
 & + \frac{1}{k_{\text{NL}}^2} \left(c_{1c}^{cc} \partial^2 \delta_c^2 + c_{1c}^{cb} \partial^2 (\delta_c \delta_b) + c_{1c}^{bb} \partial^2 \delta_b^2 \right) \\
 & \left. + \frac{c_{4c,g}^2}{a^2 k_{\text{NL}}^4} (w_c \partial^4 \delta_c + w_b \partial^4 \delta_b) + \frac{c_{4c,v}^2}{a^2 k_{\text{NL}}^4} \partial^4 \delta_c \right\} + \dots
 \end{aligned}$$

A relevant operator

- Dynamical friction term is indeed needed for renormalization of the theory, i.e. it is generated.
- Dynamical friction is a relevant operator: i.e. it cannot be treated perturbatively: it is an essential part of the linear *equations*:

$$a^2 \delta_I^{(1)''}(a, \vec{k}) + \left(2 + \frac{a \mathcal{H}'(a)}{\mathcal{H}(a)} \right) a \delta_I^{(1)'}(a, \vec{k}) = \int^a da_1 g(a, a_1) a_1 \delta_I^{(1)'}(a_1, \vec{k}) .$$

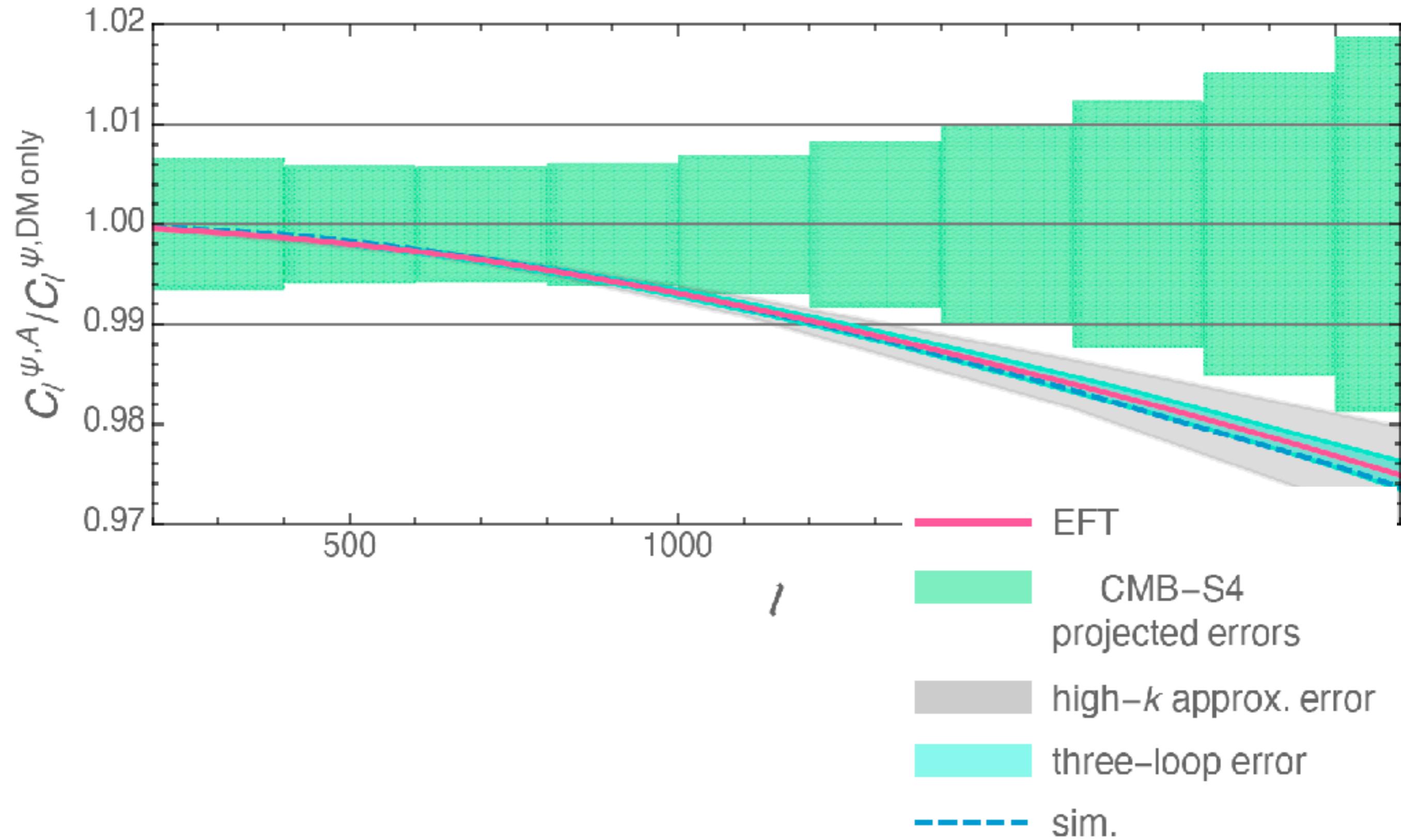
–due to the time-translation breaking and actually even non-locality, **very very very very very hard** to handle consistently.

- we can make some guesses

- Luckily: it only affect the decaying mode of the isocurvature, which is **very very very very very small**.

Predictions for CMB Lensing

- Baryon corrections are detectable in next CMB S-4 experiments. But we can predict it:



Bispectrum at one loop

with D'Amico, Donath, Lewandowski, Zhang **2206**

Bispectrum

- The tree level bispectrum had been already used for cosmological parameter analysis in
with Guido D'Amico, Jerome Gleyzes,
Nickolas Kockron, Dida Markovic, Pierre Zhang, Florian Beutler, Hector Gill-Marin **1909.05271**
Philcox, Ivanov **2112**
- $\sim 10\%$ improvement on A_s
- Time to move to one-loop:
 - Large effort:
 - data analysis with D'Amico, Donath, Lewandowski, Zhang **2206**
 - theory model with D'Amico, Donath, Lewandowski, Zhang **2211**
 - theory integration with Anastasiou, Bragance, Zheng **2212**

Data Analysis

with D'Amico, Donath, Lewandowski, Zhang 2206

- Main result:

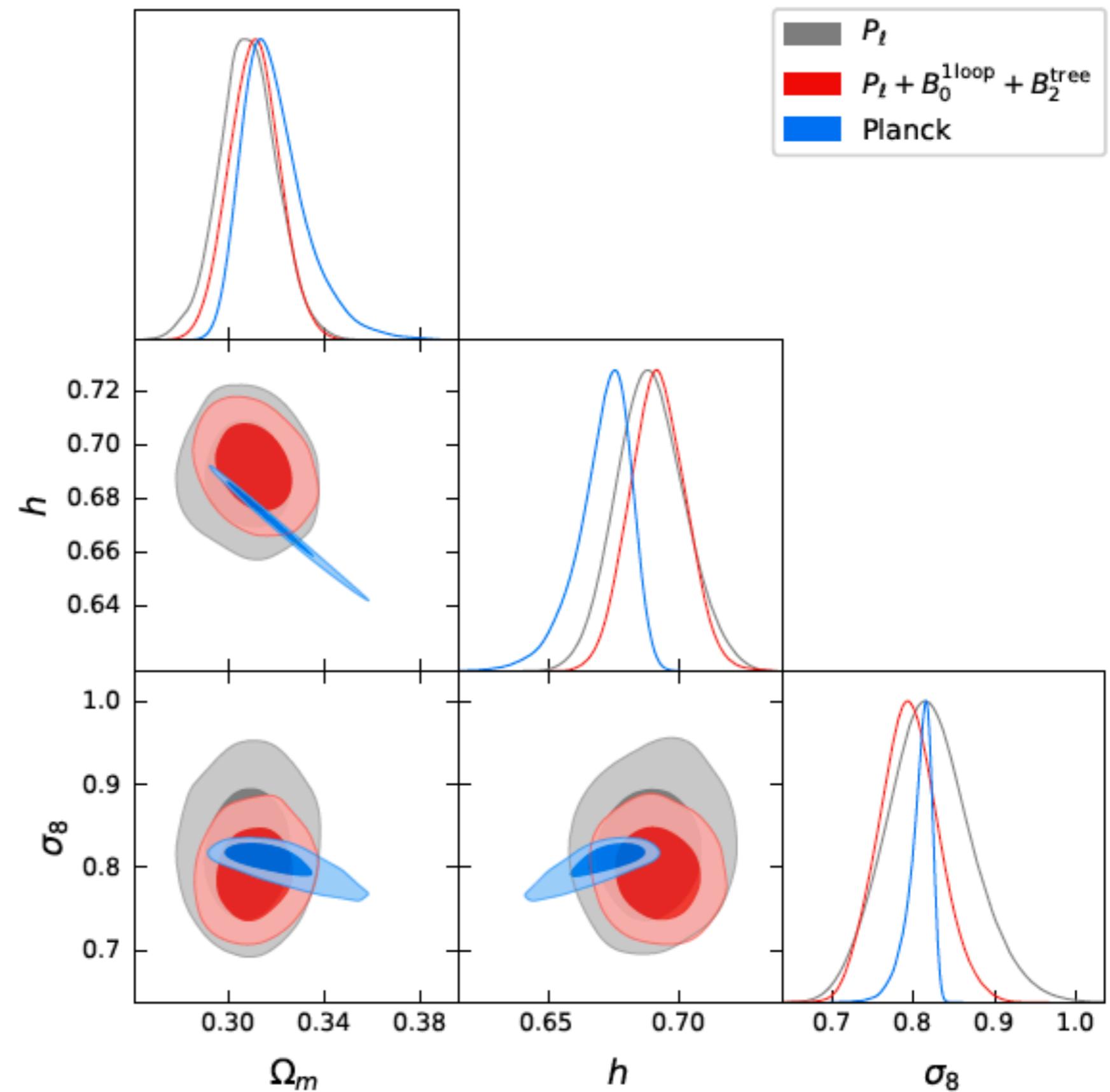
- Improvements:

- 30% on σ_8

- 18% on h

- 13% on Ω_m

- Compatible with Planck
 - no tensions



Theory Model

with D'Amico, Donath, Lewandowski, Zhang **2206**

- We add all the relevant biases (4th order) and counterterms (2nd order):

$$\begin{aligned} P_{11}^{r,h}[b_1] , \quad P_{13}^{r,h}[b_1, b_3, b_8] , \quad P_{22}^{r,h}[b_1, b_2, b_5] , \\ B_{211}^{r,h}[b_1, b_2, b_5] , \quad B_{321}^{r,h,(II)}[b_1, b_2, b_3, b_5, b_8] , \quad B_{411}^{r,h}[b_1, \dots, b_{11}] , \\ B_{222}^{r,h}[b_1, b_2, b_5] , \quad B_{321}^{r,h,(I)}[b_1, b_2, b_3, b_5, b_6, b_8, b_{10}] , \end{aligned}$$

$$\begin{aligned} P_{13}^{r,h,ct}[b_1, c_{h,1}, c_{\pi,1}, c_{\pi v,1}, c_{\pi v,3}] , \quad P_{22}^{r,h,\epsilon}[c_1^{\text{St}}, c_2^{\text{St}}, c_3^{\text{St}}] , \\ B_{321}^{r,h,(II),ct}[b_1, b_2, b_5, c_{h,1}, c_{\pi,1}, c_{\pi v,1}, c_{\pi v,3}] , \quad B_{321}^{r,h,\epsilon,(I)}[b_1, c_1^{\text{St}}, c_2^{\text{St}}, \{c_i^{\text{St}}\}_{i=4,\dots,13}] , \\ B_{411}^{r,h,ct}[b_1, \{c_{h,i}\}_{i=1,\dots,5}, c_{\pi,1}, c_{\pi,5}, \{c_{\pi v,j}\}_{j=1,\dots,7}] , \quad B_{222}^{r,h,\epsilon}[c_1^{(222)}, c_2^{(222)}, c_5^{(222)}] . \end{aligned}$$

- IR-resummation:

- For the power spectrum, we use the correct and controlled IR-resummation.
- For the bispectrum, we use the wiggle/no-wiggle approximation Ivanov and Sibiryakov **2018**

$$B_{211}^{r,h} = 2K_1^{r,h}(\vec{k}_1; \hat{z})K_1^{r,h}(\vec{k}_2; \hat{z})K_2^{r,h}(\vec{k}_1, \vec{k}_2; \hat{z})P_{\text{LO}}(k_1)P_{\text{LO}}(k_2) + \text{ 2 perms. ,}$$

$$P_{\text{LO}}(k) = P_{\text{nw}}(k) + (1 + k^2 \Sigma_{\text{tot}}^2) e^{-\Sigma_{\text{tot}}^2} P_{\text{w}}(k)$$

- For the loop, we just use $P_{\text{NLO}}(k) = P_{\text{nw}}(k) + e^{-\Sigma_{\text{tot}}^2} P_{\text{w}}(k)$, in the non-integrated power spectra

Derivation of theory model

with D'Amico, Donath, Lewandowski, Zhang
2211

Derivation of theory model

with D'Amico, Donath, Lewandowski, Zhang
2211

- Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.
- Renormalization of velocity

- In the EFTofLSS, the velocity is a composite operator $v^i(x) = \frac{\pi^i(x)}{\rho(x)}$, so, it needs to be renormalized:

$$[v^i]_R = v^i + \mathcal{O}_v^i ,$$

- Under a diffeomorphisms:

$$v^i \rightarrow v^i + \chi^i \quad \Rightarrow \quad \mathcal{O}_v^i \text{ is a scalar}$$

- In redshift space, we have local product of velocities, which need to be renormalized but have non-trivial transformations under diff.s:

$$[v^i v^j]_R \rightarrow [v^i v^j]_R + [v^i]_R \chi^j + [v^j]_R \chi^i + \chi^i \chi^j$$

- To achieve this, one can do: (so must include products $v^i \cdot \mathcal{O}_v^i$)

$$[v^i v^j]_R = [v^i]_R [v^j]_R + \mathcal{O}_{v^2}^{ij} , \quad \text{where } \mathcal{O}_{v^2}^{ij} \text{ is a scalar}$$

Derivation of theory model

with D'Amico, Donath, Lewandowski, Zhang
2211

- Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.
- Non-local-contributing counterterm.
 - This is a normal effect, just strange-looking in the EFTofLSS context.
 - Normally, counterterms are local, but, contributing through non-local Green's functions, they contribute non-locally.

Derivation of theory model

with D'Amico, Donath, Lewandowski, Zhang
2211

- Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.
- Non-local-contributing counterterm.

- In the EFTofLSS, the Green's function is simple: $\frac{1}{\partial^2}$
- Counterterms typically come with $\partial^2 \mathcal{O}_{\text{local}}$ $\Rightarrow \delta_{\text{counter}} \sim \frac{1}{\partial^2} \partial^2 \mathcal{O}_{\text{local}} \sim \mathcal{O}_{\text{local}}$
 - result almost trivial
- But at second order, and for velocity fields, contracted along the line of sight, the derivative do not cancel, so we get

$$\begin{aligned} \delta_{\text{counter}}(\vec{x}) \sim \hat{z}^i \hat{z}^j \partial_i \pi_{(2)}^j(\vec{x}) &\sim \hat{z}^i \hat{z}^j \frac{\partial_i \partial_j \partial_k \partial_m}{\partial^2} \mathcal{O}_{\text{local}} \\ &\sim \hat{z}^i \hat{z}^j \frac{\partial_i \partial_j \partial_k \partial_m}{\partial^2} \left(\frac{\partial_k \partial_l}{H^2} \Phi(\vec{x}) \frac{\partial_l \partial_m}{H^2} \Phi(\vec{x}) \right) \end{aligned}$$

- This is truly non-locally contributing, truly non-trivial.
- We check that all these terms are *needed and sufficient* for renormalization

Evaluational/Computational Challenge

with Anastasiou, Braganca, Zheng **2212**

The best approach so far

Simonovic, Baldauf, Zaldarriaga,
Carrasco, Kollmeier **2018**

- Nice trick for fast evaluation of the loops integrals
- The power spectrum is a numerically computed function
- Decompose linear power spectrum

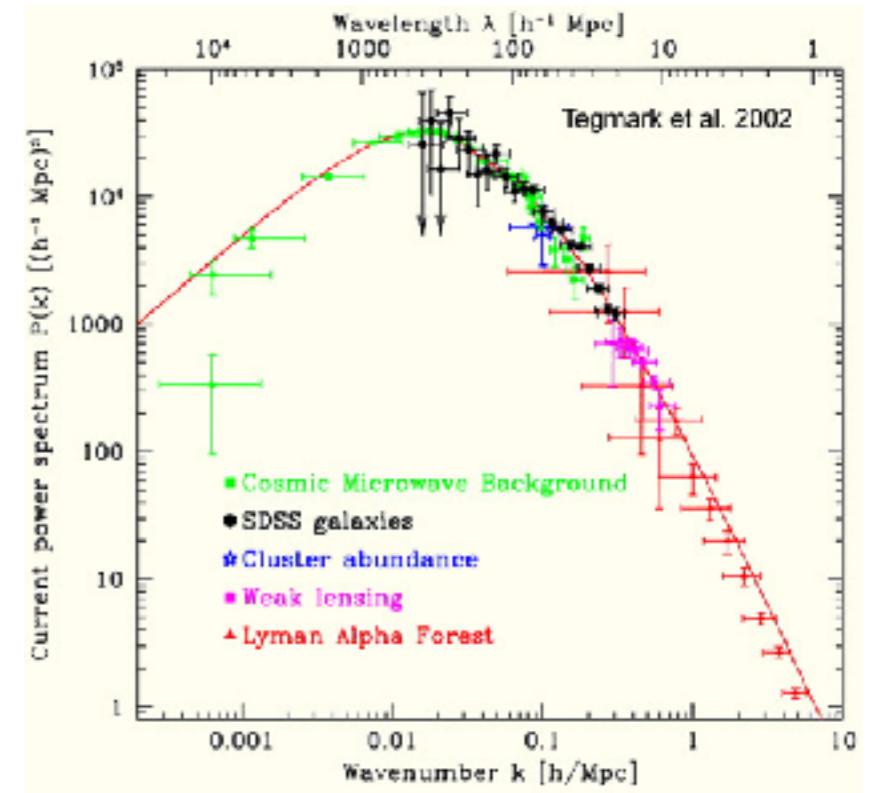
$$P_{11}(k) = \sum_n c_n k^{\mu + i\alpha n}$$

- Loop can be evaluated analytically

$$P_{1\text{-loop}}(k) = \int_{\vec{q}} K(\vec{q}, \vec{k}) P_{11}(k - q) P_{11}(q) =$$

$$= \sum_{n_1, n_2} c_{n_1} c_{n_2} \left(\int_{\vec{q}} K(\vec{q}, \vec{k}) k^{\mu + i\alpha n_1} k^{\mu + i\alpha n_2} \right) = \sum_{n_1, n_2} c_{n_1} c_{n_2} M_{n_1, n_2}(k)$$

- using quantum field theory techniques
- $M_{n_1 n_2}$ is cosmology independent \Rightarrow so computed once



Computational Challenge

Philcox, Ivanov, Cabass,
Simonovic, Zaldarriaga **2022**

- Two difficulties:

$$\begin{aligned} P_{1\text{-loop}}(k) &= \int_{\vec{q}} K(\vec{q}, \vec{k}) P_{11}(k - q) P_{11}(q) = \\ &= \sum_{n_1, n_2} c_{n_1} c_{n_2} \left(\int_{\vec{q}} K(\vec{q}, \vec{k}) k^{\mu + i\alpha n_1} k^{\mu + i\alpha n_2} \right) = \sum_{n_1, n_2} c_{n_1} c_{n_2} M_{n_1, n_2}(k) \end{aligned}$$

- integrals are complicated due to fractional, complex exponents
- many functions needed, the matrix $M_{n_1 n_2 n_3}$ for bispectrum is about 50Gb, so,
~impossible to load on CPT for data analysis
- In order to ameliorate (solve) these issues, we use a different basis of functions.

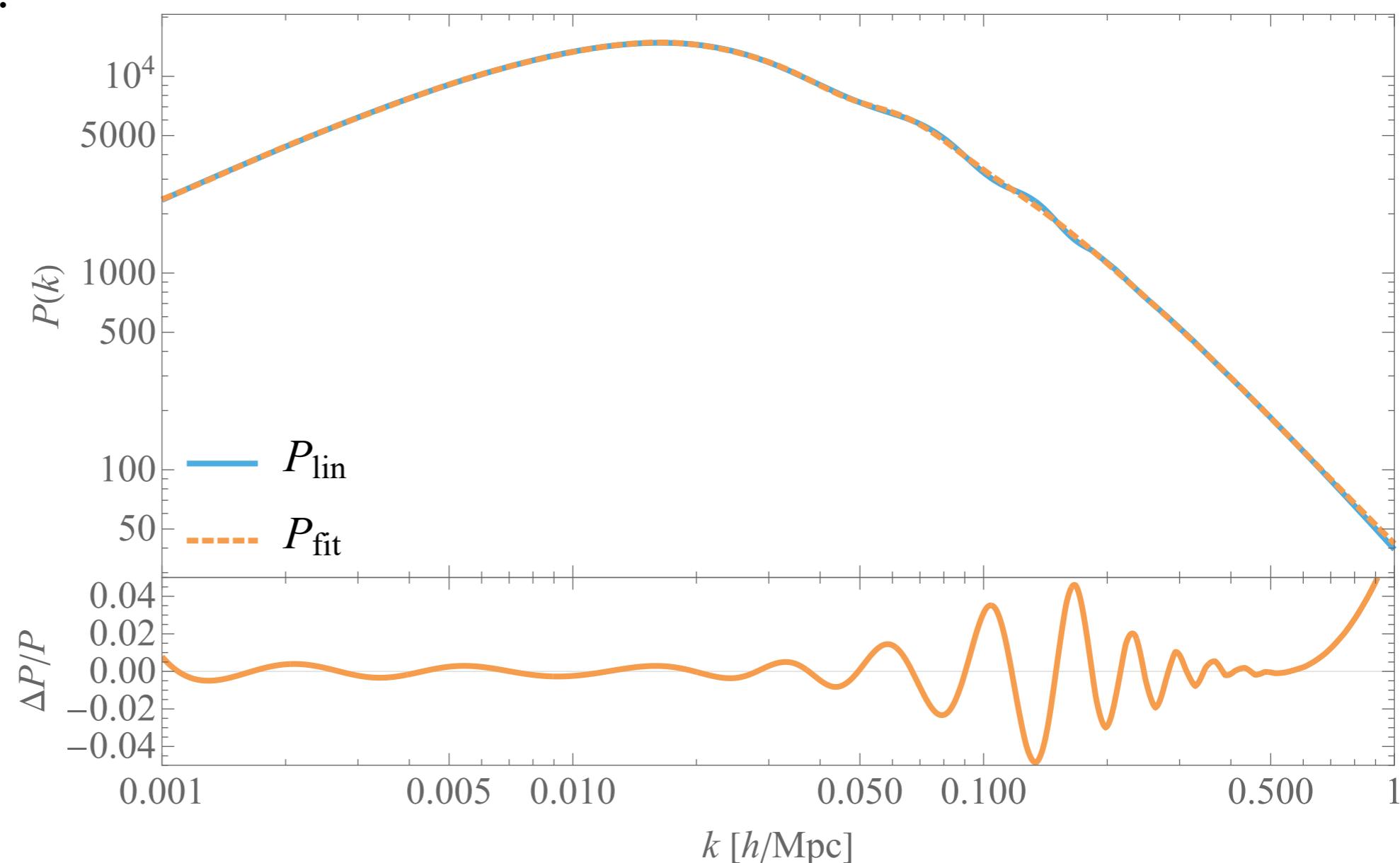
Complex-Masses Propagators

with Anastasiou, Bragance, Zheng
2212

- Use as basis:

$$f(k^2, k_{\text{peak}}^2, k_{\text{UV}}^2, i, j) \equiv \frac{(k^2/k_0^2)^i}{\left(1 + \frac{(k^2 - k_{\text{peak}}^2)^2}{k_{\text{UV}}^4}\right)^j},$$

- With just 16 functions:



Complex-Masses Propagators

with Anastasiou, Branca, Zheng
2212

- This basis is equivalent to massive propagators to integer powers

$$\frac{1}{\left(1 + \frac{(k^2 - k_{\text{peak}}^2)^2}{k_{\text{UV}}^4}\right)^j} = \frac{k_{\text{UV}}^{4j}}{\left(k^2 - k_{\text{peak}}^2 - i k_{\text{UV}}^2\right)^j \left(k^2 - k_{\text{peak}}^2 + i k_{\text{UV}}^2\right)^j},$$

-

$$\frac{k_{\text{UV}}^2}{\left(k^2 - k_{\text{peak}}^2 - i k_{\text{UV}}^2\right) \left(k^2 - k_{\text{peak}}^2 + i k_{\text{UV}}^2\right)} = -\frac{i/2}{k^2 - k_{\text{peak}}^2 - i k_{\text{UV}}^2} + \frac{i/2}{k^2 - k_{\text{peak}}^2 + i k_{\text{UV}}^2},$$

-

- So, each basis function:

$$f(k^2, k_{\text{peak}}^2, k_{\text{UV}}^2, i, j) = \sum_{n=1}^j k_{\text{UV}}^{2(n-i)} k^{2i} \left(\frac{\kappa_n}{(k^2 + M)^n} + \frac{\kappa_n^*}{(k^2 + M^*)^n} \right)$$

Complex-Masses Propagators

with Anastasiou, Branca, Zheng
2212

- This basis is equivalent to massive propagators to integer powers

$$\frac{1}{\left(1 + \frac{(k^2 - k_{\text{peak}}^2)^2}{k_{\text{UV}}^4}\right)^j} = \frac{k_{\text{UV}}^{4j}}{\left(k^2 - k_{\text{peak}}^2 - i k_{\text{UV}}^2\right)^j \left(k^2 - k_{\text{peak}}^2 + i k_{\text{UV}}^2\right)^j},$$

$$\frac{k_{\text{UV}}^2}{\left(k^2 - k_{\text{peak}}^2 - i k_{\text{UV}}^2\right) \left(k^2 - k_{\text{peak}}^2 + i k_{\text{UV}}^2\right)} = \frac{i/2}{k^2 - k_{\text{peak}}^2 - i k_{\text{UV}}^2} + \frac{i/2}{k^2 - k_{\text{peak}}^2 + i k_{\text{UV}}^2},$$

Complex-Mass propagator

- So, each basis function:

$$f(k^2, k_{\text{peak}}^2, k_{\text{UV}}^2, i, j) = \sum_{n=1}^j k_{\text{UV}}^{2(n-i)} k^{2i} \left(\frac{\kappa_n}{(k^2 + M)^n} + \frac{\kappa_n^*}{(k^2 + M^*)^n} \right)$$

Complex-Masses Propagators

with Anastasiou, Braganca, Zheng
2212

- We end up with integral like this:

$$L(n_1, d_1, n_2, d_2, n_3, d_3) = \int_q \frac{(\mathbf{k}_1 - \mathbf{q})^{2n_1} \mathbf{q}^{2n_2} (\mathbf{k}_2 + \mathbf{q})^{2n_3}}{((\mathbf{k}_1 - \mathbf{q})^2 + M_1)^{d_1} (\mathbf{q}^2 + M_2)^{d_2} ((\mathbf{k}_2 + \mathbf{q})^2 + M_3)^{d_3}}$$

- with integer exponents.
- First we manipulate the numerator to reduce to:

$$T(d_1, d_2, d_3) = \int_q \frac{1}{((\mathbf{k}_1 - \mathbf{q})^2 + M_1)^{d_1} (\mathbf{q}^2 + M_2)^{d_2} ((\mathbf{k}_2 + \mathbf{q})^2 + M_3)^{d_3}},$$

- Then, by integration by parts, we find (i.e. QCD teaches us how to) recursion relations

$$\int_q \frac{\partial}{\partial q_\mu} \cdot (q_\mu t(d_1, d_2, d_3)) = 0$$

$$\Rightarrow (3 - d_{1223})\hat{0} + d_1 k_{1s} \widehat{1^+} + d_3 (k_{2s}) \widehat{3^+} + 2M_2 d_2 \widehat{2^+} - d_1 \widehat{1^+} \widehat{2^-} - d_3 \widehat{2^-} \widehat{3^+} = 0$$

- relating same integrals with raised or lowered the exponents (easy terminate due to integer exponents).

Complex-Masses Propagators

with Anastasiou, Branca, Zheng
2212

- We end up to three master integrals:

- Tadpole:

$$\text{Tad}(M_j, n, d) = \int \frac{d^3 \mathbf{q}}{\pi^{3/2}} \frac{(\mathbf{p}_i^2)^n}{(\mathbf{p}_i^2 + M_j)^d}$$

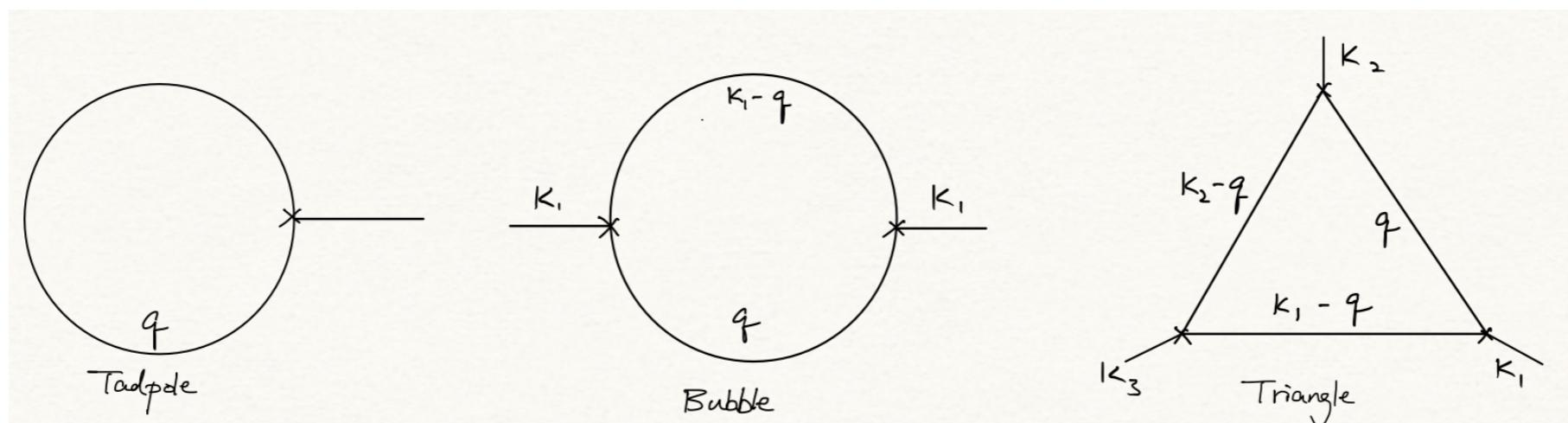
- Bubble:

$$B_{\text{master}}(k^2, M_1, M_2) = \int \frac{d^3 \mathbf{q}}{\pi^{3/2}} \frac{1}{(q^2 + M_1)(|\mathbf{k} - \mathbf{q}|^2 + M_2)}$$

- Triangle:

$$T_{\text{master}}(k_1^2, k_2^2, k_3^2, M_1, M_2, M_3) =$$

$$\int \frac{d^3 \mathbf{q}}{\pi^{3/2}} \frac{1}{(q^2 + M_1)(|\mathbf{k}_1 - \mathbf{q}|^2 + M_2)(|\mathbf{k}_2 + \mathbf{q}|^2 + M_3)},$$



Complex-Masses Propagators

with Anastasiou, Branca, Zheng
2212

- The master integrals are evaluated with Feynman parameters, but with great care of branch cut crossing, which happens because of complex masses.

- Bubble Master:

$$B_{\text{master}}(k^2, M_1, M_2) = \frac{\sqrt{\pi}}{k} i [\log (A(1, m_1, m_2)) - \log (A(0, m_1, m_2)) \\ - 2\pi i H(\text{Im } A(1, m_1, m_2)) H(-\text{Im } A(0, m_1, m_2))] ,$$

$$A(0, m_1, m_2) = 2\sqrt{m_2} + i(m_1 - m_2 + 1) ,$$

$$A(1, m_1, m_2) = 2\sqrt{m_1} + i(m_1 - m_2 - 1) ,$$

$$m_1 = M_1/k^2 \text{ and } m_2 = M_2/k^2$$

- Triangle Master:

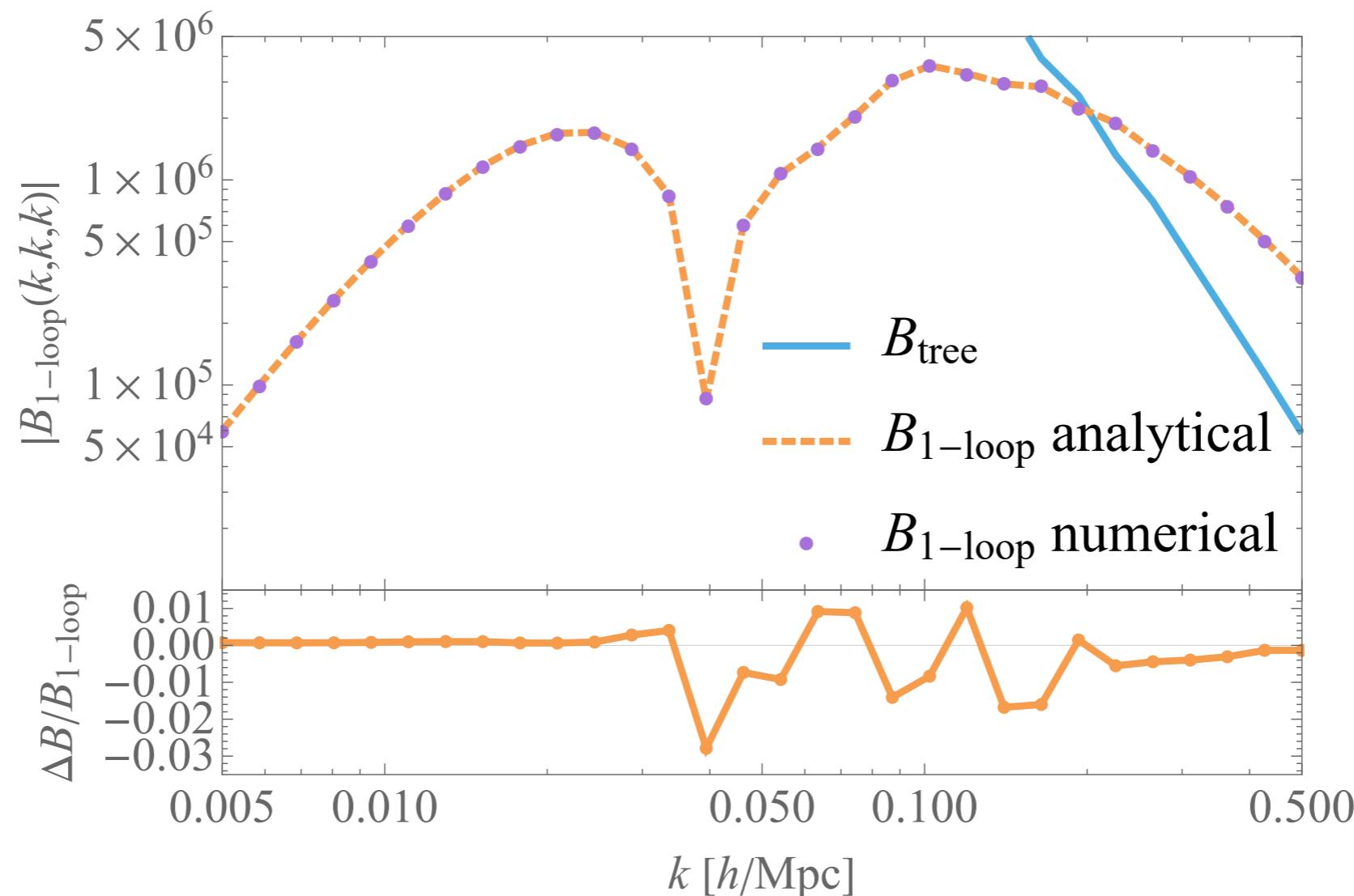
$$F_{\text{int}}(R_2, z_+, z_-, x_0) = s(z_+, -z_-) \frac{\sqrt{\pi}}{\sqrt{|R_2|}} \left. \frac{\arctan \left(\frac{\sqrt{z_+ - x} \sqrt{x_0 - z_-}}{\sqrt{x_0 - z_+} \sqrt{x - z_-}} \right)}{\sqrt{x_0 - z_+} \sqrt{x_0 - z_-}} \right|_{x=0}^{x=1} .$$

- Very simple expressions with simple rule for branch cut crossing.

Result of Evaluation

with Anastasiou, Bragance, Zheng
2212

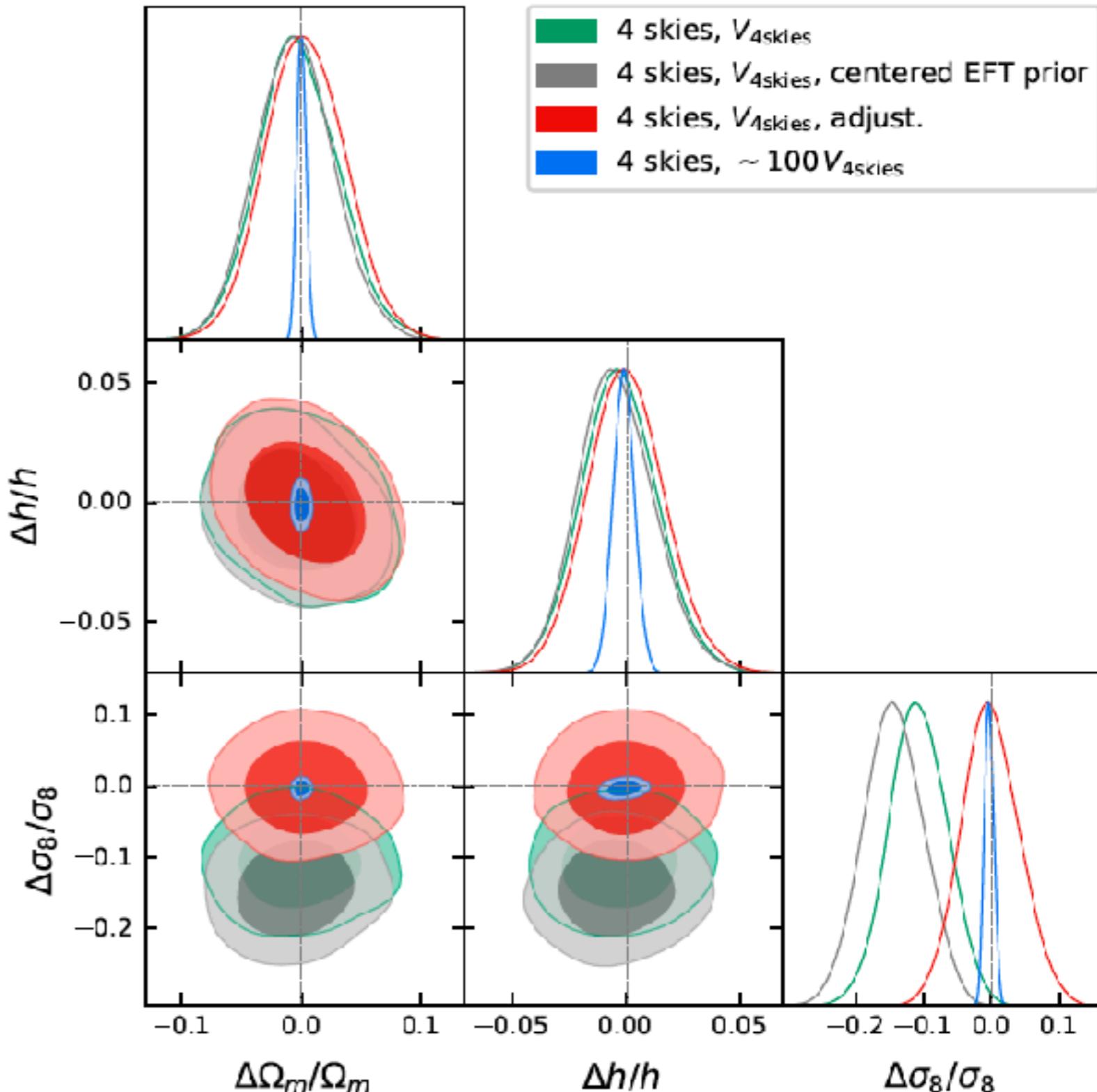
- All automatically coded up.
- For BOSS analysis, evaluation of matrix is 2.5CPU hours and 800 Mb storage, very fast matrix contractions.
- Accuracy with 16 functions:



Back to data-analysis: Pipeline Validation

Measuring and fixing phase space

- We consider synthetic data, i.e. data made out of the model, and analyze them:
 - Green: biased.
 - Why?
 - Priors centered on zero?
 - Grey: biased
 - Bug in pipeline?
 - Test by reducing covar.
 - Red: non-biased
 - It must be phase space projection
 - But the grey line offers
 - an honest measurement of it.

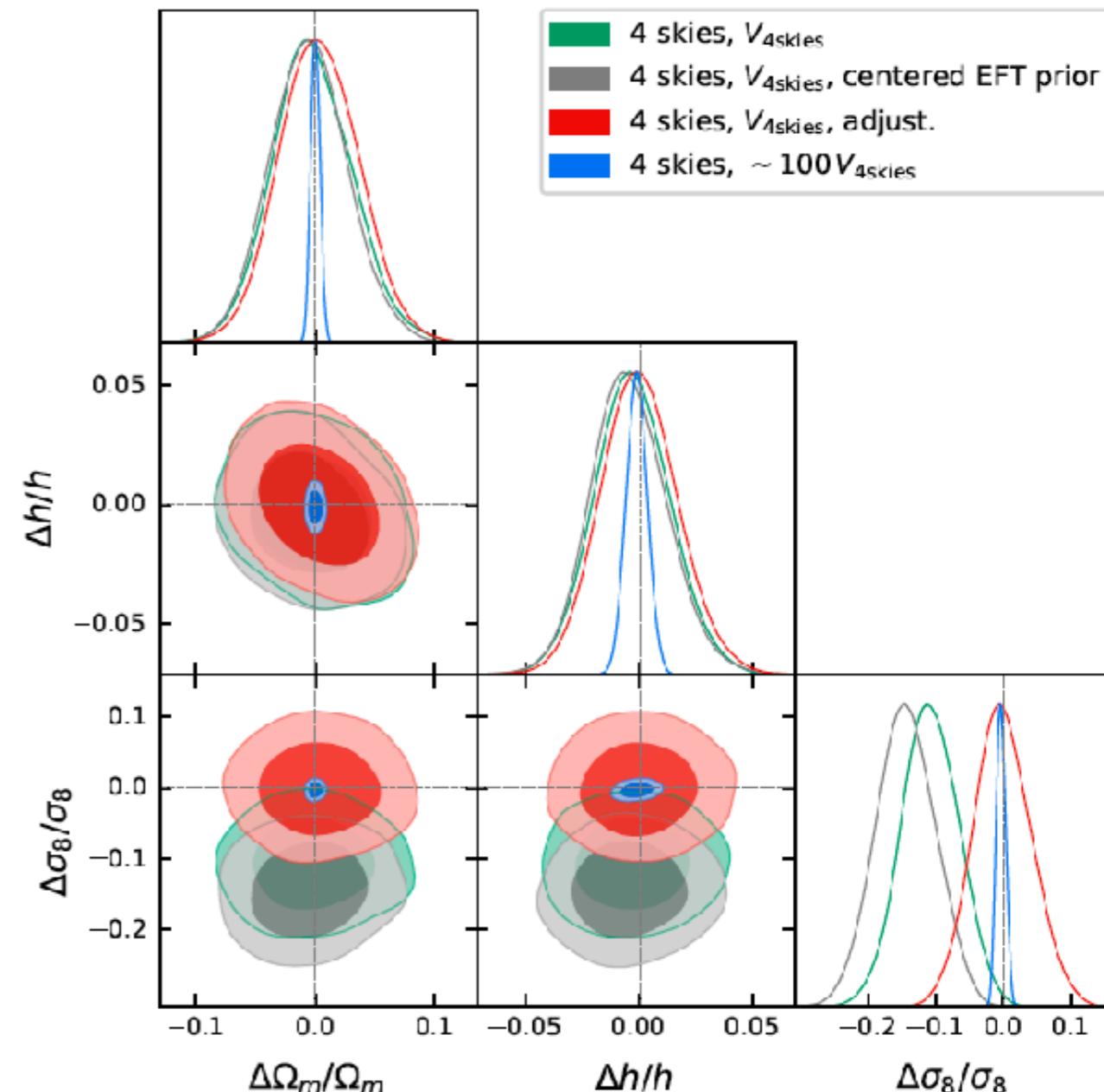


Measuring and fixing phase space

- We add:

$$\ln \mathcal{P}_{\text{pr}}^{\text{ph. sp. 4sky}} = -48 \left(\frac{b_1}{2} \right) + 32 \left(\frac{\Omega_m}{0.31} \right) + 48 \left(\frac{h}{0.68} \right),$$

$\sigma_{\text{proj}}/\sigma_{\text{stat}}$	Ω_m	h	σ_8	ω_{cdm}
1 sky, $\sim 100 V_{1\text{sky}}$	-0.1	-0.14	-0.21	-0.2
1 sky, $V_{1\text{sky}}$, adjust.	0.13	0.06	0.04	0.15
4 skies, $V_{4\text{skies}}$, adjust.	0.1	0.	-0.05	0.07



- no more proj. effect.

Scale cut from NNLO

with D'Amico, Donath, Lewandowski, Zhang 2206

- We can estimate the k_{\max} without the use of simulations, by adding NNLO terms, and seeing when they make a difference on the posteriors.

$$\begin{aligned}
 P_{\text{NNLO}}(k, \mu) &= \frac{1}{4} c_{r,4} b_1^2 \mu^4 \frac{k^4}{k_{\text{NL,R}}^4} P_{11}(k) + \frac{1}{4} c_{r,6} b_1 \mu^6 \frac{k^4}{k_{\text{NL,R}}^4} P_{11}(k), \\
 B_{\text{NNLO}}(k_1, k_2, k_3, \mu, \phi) &= 2c_{\text{NNLO},1} K_2^{r,h}(\vec{k}_1, \vec{k}_2; \hat{z}) K_1^{r,h}(\vec{k}_2; \hat{z}) f \mu_1^2 \frac{k_1^4}{k_{\text{NL,R}}^4} P_{11}(k_1) P_{11}(k_2) \\
 &+ c_{\text{NNLO},2} K_1^{r,h}(\vec{k}_1; \hat{z}) K_1^{r,h}(\vec{k}_2; \hat{z}) P_{11}(k_1) P_{11}(k_2) f \mu_3 k_3 \frac{(k_1^2 + k_2^2)}{4k_1^2 k_2^2 k_{\text{NL,R}}^4} \left[-2\vec{k}_1 \cdot \vec{k}_2 (k_1^3 \mu_1 + k_2^3 \mu_2) \right. \\
 &\quad \left. + 2f \mu_1 \mu_2 \mu_3 k_1 k_2 k_3 (k_1^2 + k_2^2) \right] + \text{perm.}, \tag{1}
 \end{aligned}$$

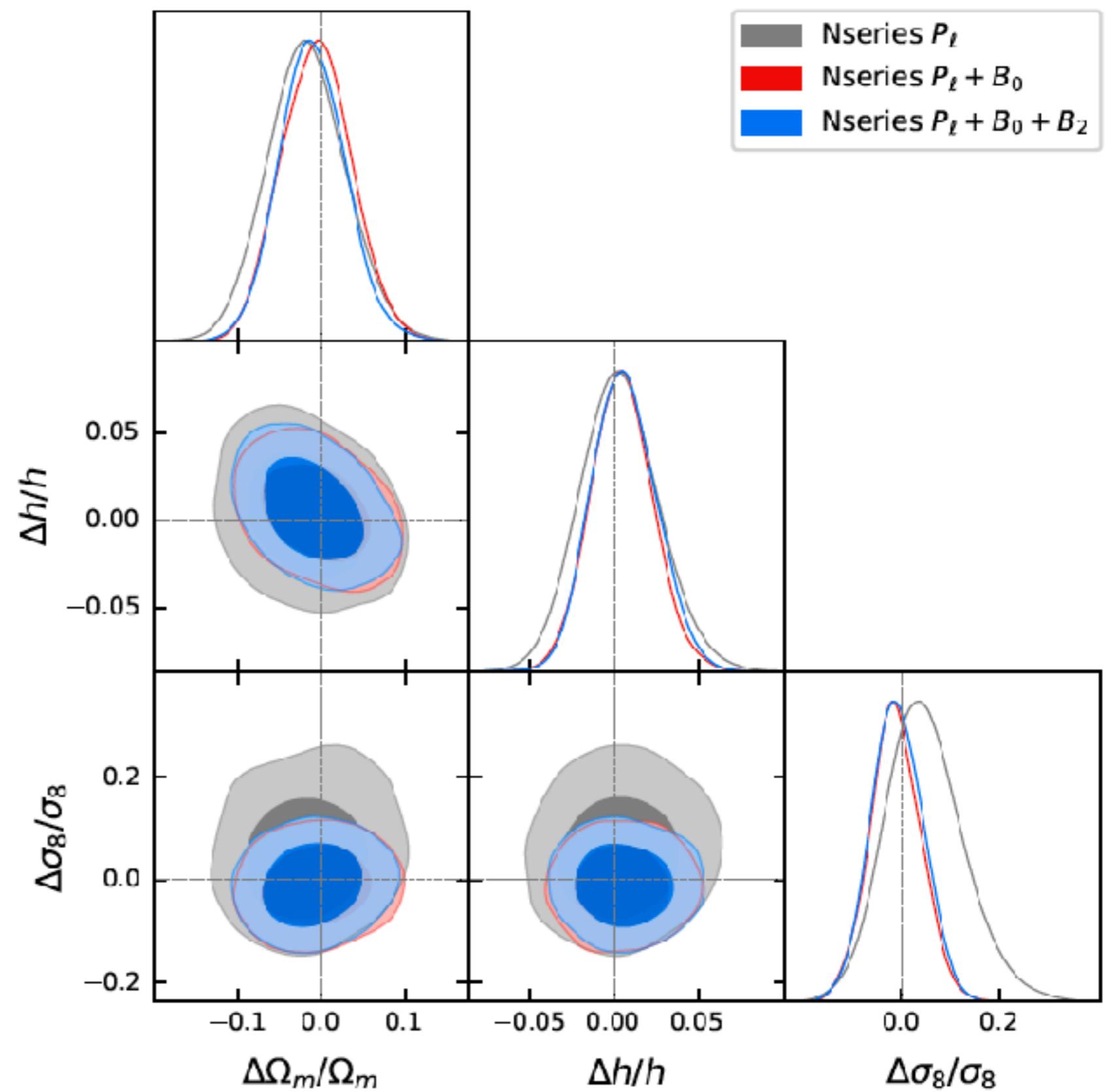
- For our k_{\max} , we find the following shifts, which are ok:

$\Delta_{\text{shift}}/\sigma_{\text{stat}}$	Ω_m	h	σ_8	ω_{cdm}	$\ln(10^{10} \Lambda_s)$	S_8
$P_\ell + B_0$: base - w/ NNLO	-0.03	-0.09	-0.03	-0.1	0.05	-0.04

Scale-cut from simulations

with D'Amico, Donath, Lewandowski, Zhang 2206

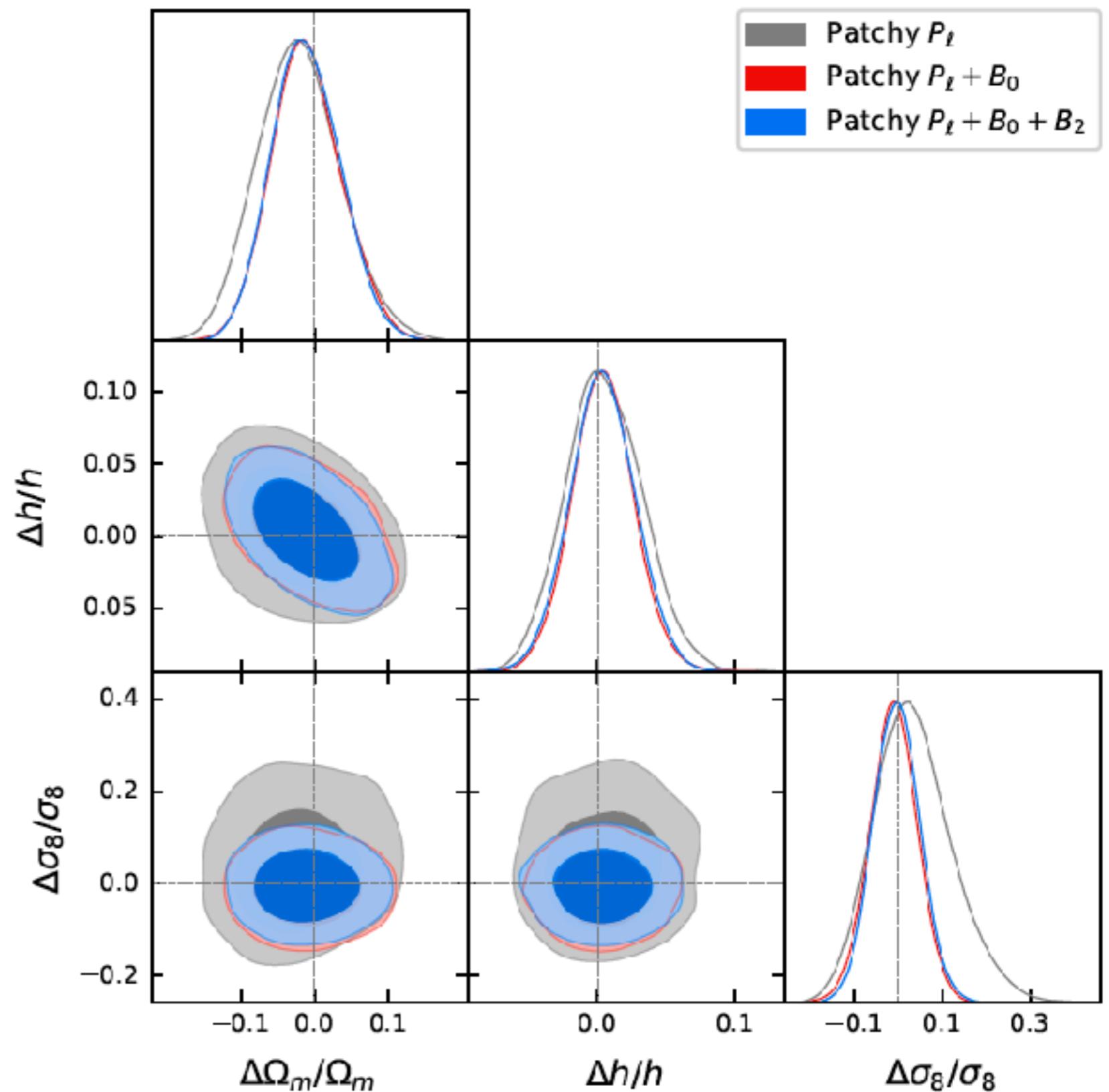
- N-series
 - Volume ~ 80 BOSS
 - safely within $\sigma_{\text{data}}/3$
- After phase-space correction



Scale-cut from simulations

with D'Amico, Donath, Lewandowski, Zhang 2206

- Patchy:
 - Volume ~ 2000 BOSS
 - safely within $\sigma_{\text{data}}/3$
- After phase-space correction

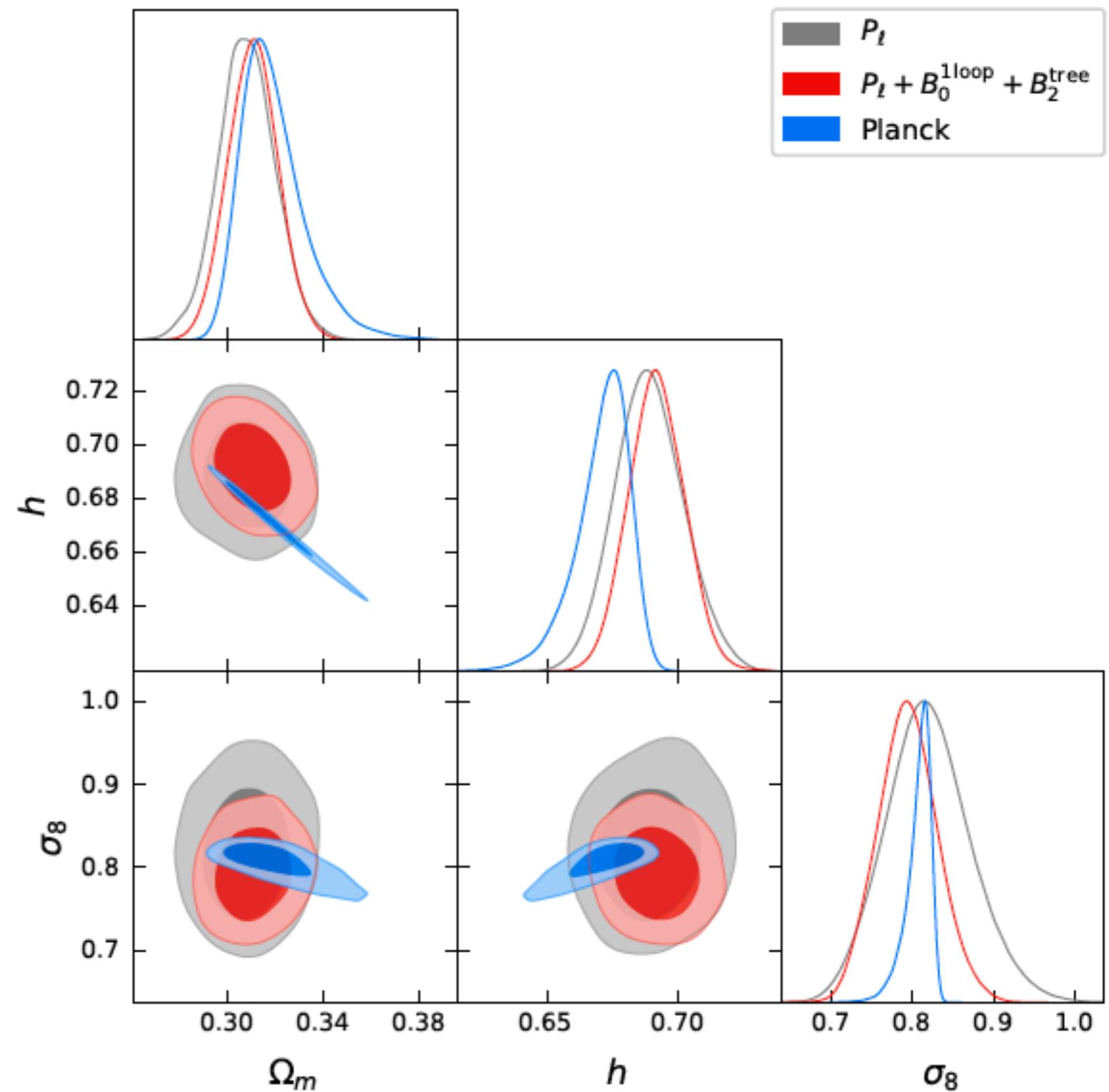


BOSS data

Data Analysis

with D'Amico, Donath, Lewandowski, Zhang 2206

- Main result:
 - Improvements:
 - 30% on σ_8
 - 18% on h
 - 13% on Ω_m
- Compatible with Planck
 - no tensions
- Remarkable consistency
 - of observables



Direct Measurement of formation time of galaxies

with Donath and Lewandowski **to appear**

Galaxies in the EFTofLSS

Senatore 1406
Mirbabayi et al. 1412

$$n_{\text{gal}}(x) = f_{\text{very complicated}} \left(\{H, \Omega_m, \dots, m_e, g_{ew}, \dots, \rho(x)\}_{\text{past light cone}} \right)$$

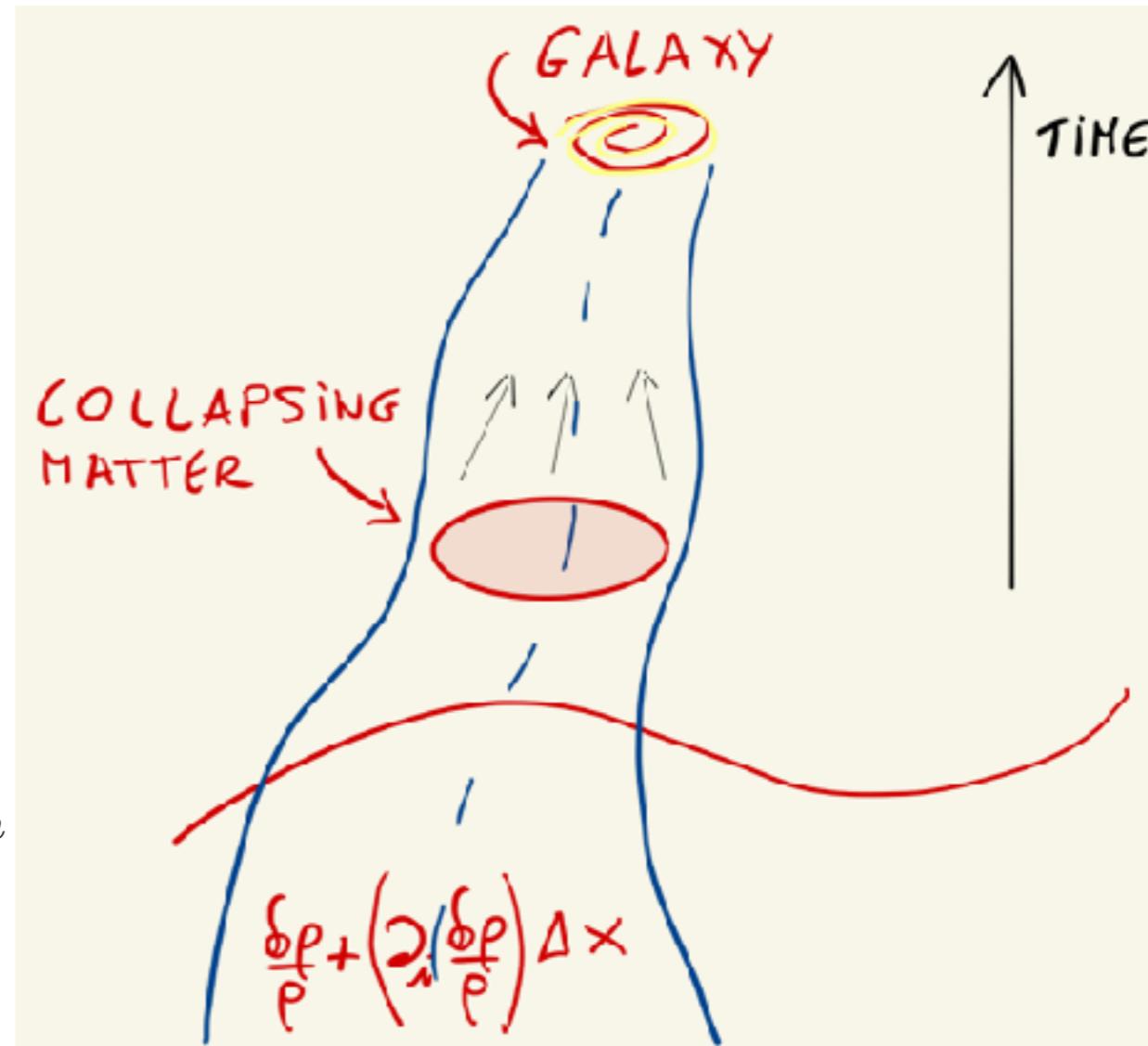
At long wavelengths \downarrow Taylor Expansion

$$\left(\frac{\delta n}{n} \right)_{\text{gal},\ell}(x) \sim \int^t dt' \left[c(t, t') \left(\frac{\delta \rho}{\rho} \right) (\vec{x}_{\text{fl}}, t') + \dots \right]$$

- all terms allowed by symmetries
- all physical effects included

–e.g. assembly bias

$$\begin{aligned} \left\langle \left(\frac{\delta n}{n} \right)_{\text{gal},\ell}(x) \left(\frac{\delta n}{n} \right)_{\text{gal},\ell}(y) \right\rangle &= \\ &= \sum_n \text{Coeff}_n \cdot \langle \text{matter correlation function} \rangle_n \end{aligned}$$



Consequences of non-locality in time

- This means that one *does not* get the same terms as in the local-in-time expansion
- If we could measure one of these terms, we could *measure* that Galaxies take an Hubble time to form. We have never measured this: we take pictures of different galaxies at different stages of their evolution. But we have never *seen* a galaxy form in an Hubble time.
 - This would be the first direct evidence that the universe lasted an Hubble time.
- So, detecting a non-local-in-time bias would allow us to measure that, and from the size, the formation time. Unfortunately, so far, not yet.

Consequences of non-locality in time

- Mathematics again:

- non-local in time:

$$\delta_g^{(n)}(\vec{x}, t) = \sum_{\mathcal{O}_m} \int_0^t dt' H(t') c_{\mathcal{O}_m}(t, t') \times [\mathcal{O}_m(\vec{x}_{\text{fl}}(\vec{x}, t, t'), t')]^{(n)},$$

$$\mathcal{O}_{m=3} \supset \delta^2 \theta, \delta^3, \dots$$

- local in time:

$$\Rightarrow \delta_{g,\text{loc}}^{(n)}(\vec{x}, t) = \sum_{\mathcal{O}_m} c_{\mathcal{O}_m}(t) \mathcal{O}_m^{(n)}(\vec{x}, t),$$

- more non local in time: $[\mathcal{O}_m(\vec{x}_{\text{fl}}(\vec{x}, t, t'), t')]^{(n)} = \sum_{\alpha=1}^{n-m+1} \left(\frac{D(t')}{D(t)} \right)^{\alpha+m-1} \mathbb{C}_{\mathcal{O}_m, \alpha}^{(n)}(\vec{x}, t)$

$$\Rightarrow \delta_g^{(n)}(\vec{x}, t) = \sum_{\mathcal{O}_m} \sum_{\alpha=1}^{n-m+1} c_{\mathcal{O}_m, \alpha}(t) \mathbb{C}_{\mathcal{O}_m, \alpha}^{(n)}(\vec{x}, t)$$

Consequences of non-locality in time

$$\delta_{g,\text{loc}}^{(n)}(\vec{x}, t) = \sum_{\mathcal{O}_m} c_{\mathcal{O}_m}(t) \mathcal{O}_m^{(n)}(\vec{x}, t), \quad \delta_g^{(n)}(\vec{x}, t) = \sum_{\mathcal{O}_m} \sum_{\alpha=1}^{n-m+1} c_{\mathcal{O}_m, \alpha}(t) \mathbb{C}_{\mathcal{O}_m, \alpha}^{(n)}(\vec{x}, t)$$

- it turns out that up to 4th order in PT, the two basis of operators were identical.
- but at 5th order they are not!
 - out of 29 independent operators, 3 cannot be written as local in time ones.
- \Rightarrow By looking at, eg,

$$\langle \delta_{g_1}^{(5)}(\vec{x}_1) \delta_{g_2}^{(1)}(\vec{x}_2) \delta_{g_3}^{(1)}(\vec{x}_3) \delta_{g_4}^{(1)}(\vec{x}_4) \delta_{g_5}^{(1)}(\vec{x}_5) \delta_{g_6}^{(1)}(\vec{x}_6) \rangle$$

- we can detect these biases, and, from their size, determine:
 - the order of magnitude of the formation time of galaxies
 - direct evidence that the universe lasted 13 Billion years

Consequences of non-locality in time

- more on time-non-locality:

- if formation time is fast, $1/\omega$, we can Taylor expand the Kernels:

$$c_{\mathcal{O}_m, \alpha}(t) \approx c_{\mathcal{O}_m}(t) \left(1 + g_{\mathcal{O}_m, \alpha}(t) \frac{H}{\omega} + \dots \right),$$

- so these terms would be suppressed, and we could therefore determine a fast formation time.

Consequences of non-locality in time

- Nice recursion relations for these operators:

$$\begin{aligned}
 [\mathcal{O}_m(\vec{x}_{\text{fl}}(\vec{x}, t, t'), t')]^{(n)} &= \sum_{\alpha=1}^{n-m+1} \left(\frac{D(t')}{D(t)} \right)^{\alpha+m-1} \mathbb{C}_{\mathcal{O}_m, \alpha}^{(n)}(\vec{x}, t) \\
 \Rightarrow \quad \mathcal{O}_m^{(n)}(\vec{x}, t) &= \sum_{\alpha=1}^{n-m+1} \mathbb{C}_{\mathcal{O}_m, \alpha}^{(n)}(\vec{x}, t) ,
 \end{aligned}$$

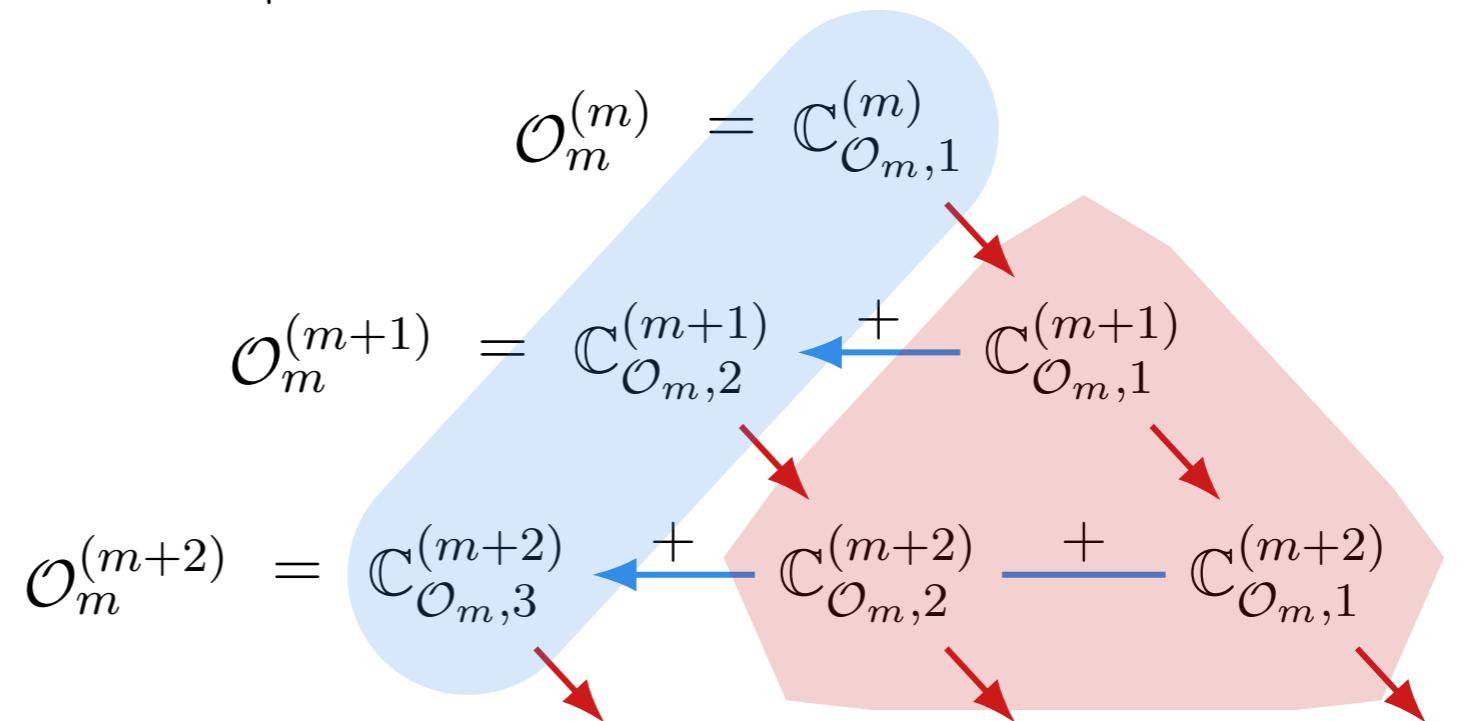
equal-time completeness relation

fluid recursion

$$\Rightarrow \mathbb{C}_{\mathcal{O}_m, \alpha}^{(n)}(\vec{x}, t) = \sum_{q=m}^{n-1} \frac{1}{n - \alpha - m + 1} \partial_i \mathbb{C}_{\mathcal{O}_m, \alpha}^{(q)}(\vec{x}, t) \frac{\partial_i}{\partial^2} \theta(\vec{x}, t)^{(n-q)},$$

- Easy higher order:

\Rightarrow

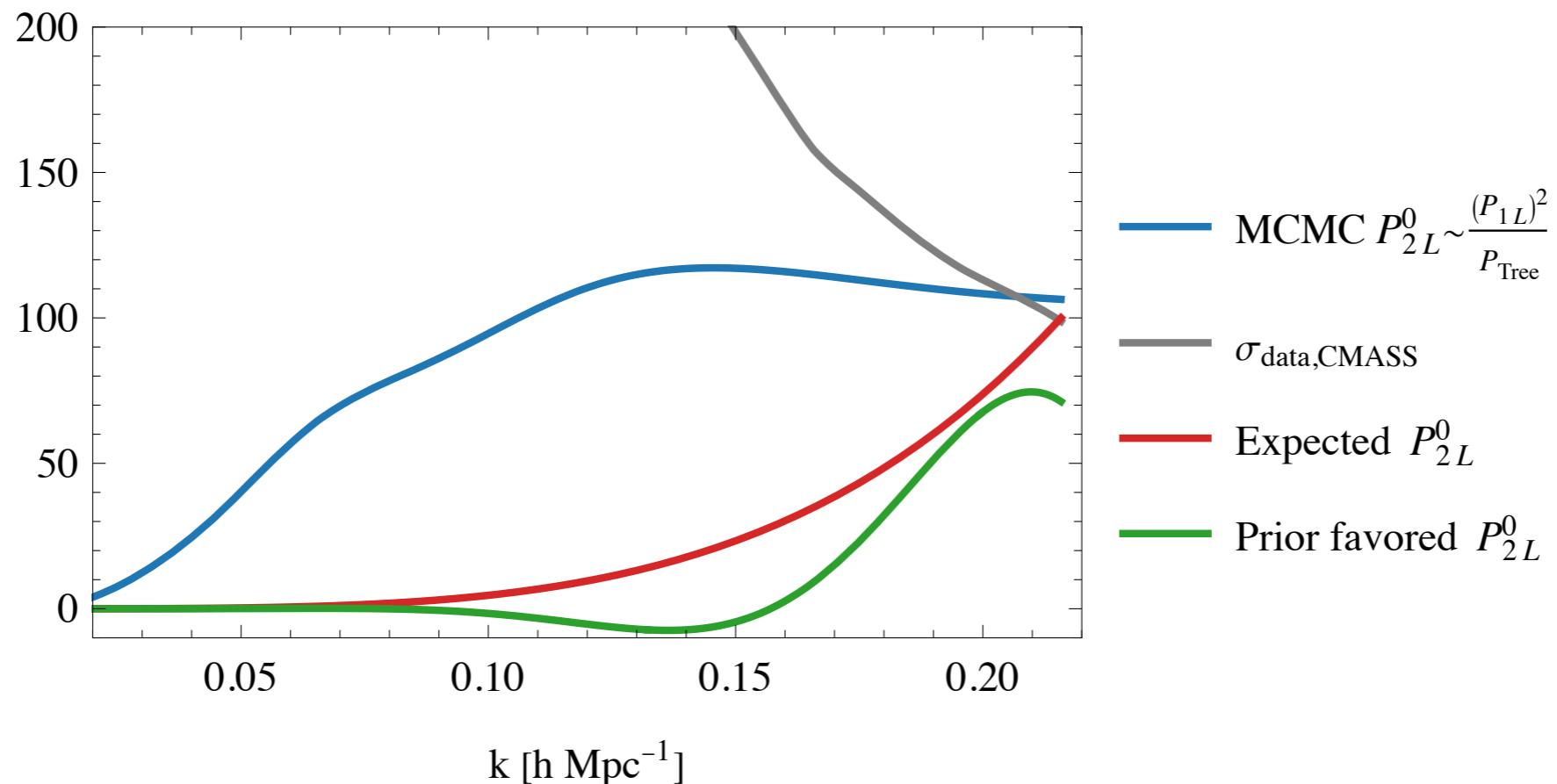


Peeking into the next Decade

with Donath, Bracanga and Zheng **to appear**

Next Decade

- After validating our technique against the MCMC's on BOSS data, we Fisher forecast for DESI and Megamapper
- Prediction of one-loop Power Spectrum and Bispectrum
- We introduce a '*perturbativity prior*': impose expected size and scaling of loop



- Also a '*galaxy formation prior*', 0.3 in each EFT-parameter

Rsults: Non-Gaussianities

BOSS: $\sigma(\cdot)$	$f_{\text{NL}}^{\text{loc.}}$	$f_{\text{NL}}^{\text{eq.}}$	$f_{\text{NL}}^{\text{orth.}}$
$P+B_{\text{Tree}}$	37	357	142
$P+B$	23	253	67
$P+B+\text{p.p.}$	17	228	62
$P+B+\text{p.p.}+\text{g.p.}$	15	163	49

DESI: $\sigma(\cdot)$	$f_{\text{NL}}^{\text{loc.}}$	$f_{\text{NL}}^{\text{eq.}}$	$f_{\text{NL}}^{\text{orth.}}$
$P+B_{\text{Tree}}$	3.61	142	71.5
$P+B$	3.46	114	30.2
$P+B+\text{p.p.}$	3.26	91.5	27.0
$P+B+\text{p.p.}+\text{g.p.}$	3.19	77.0	21.8

MMo: $\sigma(\cdot)$	$f_{\text{NL}}^{\text{loc.}}$	$f_{\text{NL}}^{\text{eq.}}$	$f_{\text{NL}}^{\text{orth.}}$
$P+B_{\text{Tree}}$	0.29	23.4	8.7
$P+B$	0.27	17.7	4.6
$P+B+\text{p.p.}$	0.26	16.0	4.2
$P+B+\text{p.p.}+\text{g.p.}$	0.26	12.6	3.4

- Just using perturbativity prior, potentially a factor of 20, 3, 6 over Planck!!

Results: Curvature and Neutrinos

DESI: $\sigma(\cdot)$	h	$\ln(10^{10} A_s)$	Ω_m	n_s	Ω_k
$P+B$	0.004	0.035	0.002	0.011	0.013
$P + B + \text{p.p.}$	0.004	0.032	0.002	0.008	0.012
$P+B+\text{p.p.}+\text{g.p.}$	0.004	0.025	0.002	0.007	0.009

MMo: $\sigma(\cdot)$	h	$\ln(10^{10} A_s)$	Ω_m	n_s	Ω_k
$P+B$	0.002	0.0052	0.0003	0.002	0.0015
$P + B + \text{p.p.}$	0.002	0.0046	0.0003	0.002	0.0012
$P+B+\text{p.p.}+\text{g.p.}$	0.002	0.0044	0.0003	0.001	0.0011

- Just using perturbativity prior, potentially factor of **5 over Planck!**
 - Important for the landscape of string theory.
- Neutrinos: guaranteed evidence/detection:

2σ DESI, 14σ MegaMapper

Where can we make better?

- Shot noise and EFT-parameters:

$\sigma(\cdot)$	h	$\ln(10^{10} A_s)$	Ω_m	n_s	$f_{\text{NL}}^{\text{loc.}}$	$f_{\text{NL}}^{\text{eq.}}$	$f_{\text{NL}}^{\text{orth.}}$
$P+B$	0.0042	0.020	0.0022	0.010	3.5	114	30
$P + B + g.p. :$	0.0042	0.018	0.0022	0.009	3.4	83	23
$P + B : \text{bias fixed}$	0.0037	0.010	0.0016	0.004	2.0	21	11
$P + B : n_b \rightarrow \infty$	0.0035	0.011	0.0009	0.005	1.7	67	17

DESI

$\sigma(\cdot)$	h	$\ln(10^{10} A_s)$	Ω_m	n_s	$f_{\text{NL}}^{\text{loc.}}$	$f_{\text{NL}}^{\text{eq.}}$	$f_{\text{NL}}^{\text{orth.}}$
$P+B$	0.0021	0.0047	0.00034	0.0017	0.27	18	4.6
$P + B + g.p. :$	0.0020	0.0045	0.00033	0.016	0.26	13	3.6
$P + B : \text{bias fixed}$	0.0016	0.0034	0.00021	0.0010	0.17	3.6	1.7
$P + B : n_b \rightarrow \infty$	0.00019	0.00045	0.000029	0.00017	0.11	5.4	1.5

MegaMapper

Summary

- After the initial, successful, application to BOSS data:
 - measurement of cosmological parameters
 - new method to measure Hubble
 - perhaps fixing tension
- the EFTofLSS is starting to look ahead to
 - higher-order and higher-n point functions
 - enlightening what next surveys could do, and how to design them
 - learning about some astrophysics, qualitative facts on the universe