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A.Theory: EFT at the field level



Cold Dark Matter
cosmology in a nutshell

variance of matter fluctuations

Inflation+CMB -> scale- per logarithmic k interval

10! g

invariant, adiabatic, approx. L —00 .
Gaussian initial conditions T =
: z=1.

Large-scale fluctuations are
small (still linear today)

Structure forms hierarchically
from small to large scales

Perturbative expansion in
fluctuations on large scales



Theory of galaxy
clustering

® Perturbations in our universe
are small on large scales

® Perturbation theory works
on quasilinear scales k < kni

® (Goal: describe galaxy
clustering up to a given scale
and accuracy using a finite
number of free (A) bias
parameters and (B) stochastic
amplitudes

variance of matter fluctuations
per logarithmic k interval

T ' IR IR
2 =0.5 :
z=1.0




EFT approach

® |dea: trust our theory for
k<A

k [hMpc ']



EFT approach

® |dea: trust our theory for
k<A

® Split initial perturbations
into large scale (< A) and |
small scale (>= A\): T
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o(x,T) = P, 7) 1 =0p+ 0,
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EFT approach

® |dea: trust our theory for

k<A
10"
® Split initial perturbations
. 100k
into large scale (< A) and |
small scale (>= A): T

o(x,T) = P, 7) 1 =0p+ 0,

P, (7‘) 107 modes that are
integrated out
® Then, we integrate out b (hMpe™

(marginalize over)
perturbations with k > A



(A) Bias

Incorporate effect of large-scale

perturbations explicitly using Sv A 5.
bias expansion, with free O
coefficients bp ol '
= 1071k
5,() = 3 boO()
O < 10—2_
® Fields O are constructed modes that are
from § W/
© A Y 107 10~ 10°

k [hMpc ']



(A) Bias

® |ncorporate effect of large-scale
perturbations explicitly using
bias expansion, with free 10
coefficients b |

1005

10_35

® Fields O are constructed modes that are
from § _ Integrated out
rom o, R T ™

k [hMpc ']

® Small-scale perturbations add
noise €



(A) Bias

® |ncorporate effect of large-scale

perturbations explicitly using Sv A 5.
bias expansion, with free O
coefficients bo ol | - —
— 107'F
0g(x) = ) boO(x) +e(z) =
O < 102k

1073
5 modes that are

inte;gratéed out
/1 1 1 1 1 ' | L g L I: L L IZI L |
102 1071 10°
k [hMpc ']

® Fields O are constructed _
from o, 10-+-

® (Can understand this as expanding the
source term in the continuity eqn: ny(x,t) + di(nguy (x,t)) = for[0;0;(x,1), ]



(A) Bias

® Which bias terms O(x) we need to include:
® Well understood by now

® |nclude dependence on full history of
structure formation

—
® |ncludes “local bias” (powers of matter

density) as well as tidal fields, time and
space derivatives thereof

® Displacement terms protected by
equivalence principle have fixed coefficients!

Desjacques, Jeong, FS; Phys. Rept. (2018)



Bias: details

® The bias expansion should contain all possible terms we
can make out of time and spatial derivatives of density and

tidal field

® Spatia

spatia

derivatives suppressed by k R+, where R+ is
length scale associated with galaxy formation

® Convenient, complete expansion in terms of PT
contributions to Lagrangian distortion tensor M(® up to a
given order (n <= N):

st a[MD] & § ort Z.
2 a[(MO)], (O] og "9 ¥ s (@7)
3 a((D)?), (M) M O), (D), a1 =:0'; + M';(q,7)

(O, O O] (D)) MO,

tr[M D) tr[ MO MEN |t MO MO P] e[ MO MO e[ M2 M)



(B) Stochasticity

® ¢ arises from local (in real space)
superposition of many small-scale
perturbations

® Central limit theorem: (k) is
approximately Gaussian distributed
(the lower k, the more Gaussian it is)

® | ocal in real space: power spectrum is
white noise at low k, with L
COI"I"eCtIOnS* ~k2 * Also, density dependence:

coupling of € and d

(k)" (k') = (2m)%p (ks — K) | Po + K2PS2) 4 -

Desjacques, Jeong, FS; Phys. Rept. (2018)



Partition function for galaxies

® |dea: couple solutions to EOM to source term

® After integrating out initial modes above A,

. 1 . :
obtain Zp|Jn] = /D5in,A exp [— 50m,A (PI,_/1X>--5iJnA
) 9 2] )
=1 i i
+ JA Z WKil...im (A)dih - Oifa
m=1 )
1 = 1 i i
-+ §JA,Z'JA,j ZO mKil---im (A)éin,A T 5in,A
1 =1 Kk A §im
+ EJA,iJA,jJA,k Z ml il...im( ) in, A" OmA T |

m=0

Carroll, Pollack, Leichenauer; 1310.2920
Cabass, FS; 1909.04022



Partition function for galaxies

® |dea: couple solutions to EOM to source term

® After integrating out initial modes above A,
obtain Zaln) = [ Db s exp [— S ( L—k) 5

+ JA 0 Z K?Z Am (A)éfrll,A T 5;&;{:/\

m= 1

1 ( ( im
+ 2JA ’LJA] Z m|KZf im(A)éi;,A'“(sin,A
1
6

JAZJA]JARZ Kwk (A)éiié,A”'(Siig:A—'_

11...tm

® Doesn’t depend on cutoff A -> RG equations

PL is cut linear propagator

Carroll, Pollack, Leichenauer; 1310.2920
Cabass, FS; 1909.04022




Partition function for galaxies

® |dea: couple solutions to EOM to source term

® After integrating out initial modes above A,

obtain NCUNES /D5in,A exp [— 25an( L_/1\> n
4 00 .
H JA Z zl Am 5:}11/\5;&3:/\)
\_ m= 1
fl ) 1 ) \
+ 2JA ZJA] Z m|Kzf zm 51111,A'“5ir7:A

. . . -+ 6JA7,JA]JA/€ Z K;szm(A)(sfxiA(slzg:A—i_ ] )
® (O(J) contributions: bias ‘- 0
) ( im . 1 1 —
0y det.A [Oim,A] = va i (M)SIL e — K, i ;OZ ins ki)

® O(]?), O()), ... contributions: stochasticity

Carroll, Pollack, Leichenauer; 1310.2920
Cabass, FS; 1909.04022



B. Inference: Field-level and LFlI



A broad view of
cosmology inference

® Given cosmological parameters 0, we can
hope to predict

|. Statistics of initial conditions

2. How a given 6;,(x) evolves into the final
density field
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A broad view of
cosmology inference

® Given cosmological parameters 0, we can
hope to predict

|. Statistics of initial conditions Prior Pprior (finﬁ)

2. How a given 6;,(x) evolves into the final

density ﬁeld deterministic evolution
g\fwd [5;117 (9]



Bayesian cosmology
inference

® The full posterior of cosmological barameters given
the data is then given by

P(§) / D6, P (5g |5fwd i 9]) Prior (8in, 0)



Bayesian cosmology
inference

® The full posterior of cosmological barameters given
the data is then given by

P(§) / D6, P (5g |5fwd i 9]) Prior (8in, 0)

Multivariate Gaussian, diagonal
covariance in Fourier space



Bayesian cosmology
inference

® The full posterior of cosmological barameters given
the data is then given by

P(§) / D6, P (5g |5fwd i 9]) Prior (8in, 0)

_ / d{bo} P (8,|6twal6in. 0]) Porior ({b0))

conditional probability of galaxy density given matter density
- contains all physics of galaxy formation




Bayesian cosmology
inference

® The full posterior of cosmological barameters given
the data is then given by

P#) x [ Doy, P (5g |5fwd i 9]) Prior (8in, 0)

\

Functional integral



Bayesian cosmology
inference

P(0) o / D1 P (8,|660a(611.0]) Posior (810.0)

® Standard approach proceeds via data compression: replace
galaxy density field with much smaller data vector (e.g., power
spectrum in bins of k)




Bayesian cosmology
inference

P(0) o / D1 P (8,|660a(611.0]) Posior (810.0)

® Standard approach proceeds via data compression: replace
galaxy density field with much smaller data vector (e.g., power
spectrum in bins of k)

® Then, the functional integral over initial conditions (a.k.a
taking ensemble average) is done either

® semi-analytically (loop integrals in PT / EFT approach -
formally, sending A to infinity)

® numerically (emulators based on ensemble of simulations)



Bayesian cosmology
inference

P(0) o / D1 P (8,|660a(611.0]) Posior (810.0)

® Can we make progress without this (lossy) data
compression!?



Inference beyond the
power spectrum

P(0) o / D1 P (8,|660a(611.0]) Posior (810.0)

® Yes - basically by doing a Markov Chain Monte Carlo:




Inference beyond the
power spectrum

P(0) o / D1 P (8,|660a(611.0]) Posior (810.0)

® Yes - basically by doing a Markov Chain Monte Carlo:

® Discretize field on grid/lattice (Nyquist frequency = cutoff A)
® Draw initial conditions from prior
® Forward-evolve using gravity

® Compare with data and repeat



Inference beyond the
power spectrum

P(0) o / D1 P (8,|660a(611.0]) Posior (810.0)

® Yes - basically by doing a Markov Chain Monte Carlo:

® Discretize field on grid/lattice (Nyquist frequency = cutoff A)
® Draw initial conditions from prior
® Forward-evolve using gravity

® Compare with data and repeat

® | ots of interest in this approach recently

Kitaura & Ensslin, Jasche & Wandelt,Wang, Mo et al, Seljak et al, Jasche & Lavaux (2017), ...



The galaxy likelihood

® Putting numerical challenges aside, we need an
expression for the field-level galaxy likelihood:

® conditional probability of galaxy density given
matter density

P(6) [ Déin P (8, 31u4(610.0)) Povor (8.0

— [ @0} P (8,814l 1) Porior({0})




EFT likelihood

® Combining knowledge about bias and stochasticity, we can
write:
59 (k) = 8. (k) + (k)
Sgaet (k) = > boO(k)

® andinsert € = 0, — 04 det into the Gaussian PDF for €:

e |5 [ G g

FS, Elsner, et al; 1808:02002
Cabass, FS; 1909.04022



EFT likelihood from the
partition function

® (Goal: obtain joint likelihood for galaxy
density modes below cutoff, {d,(k)} k< .

® Given by functional Fourier transform of
partition function:

Paldgl = (657 (9.0 = 3g.0))
_ /DXA <eXp {iX}L&(ng,A - 59,A)i}>
_ / DX\ exp [—iX/i\(Sg,A)i} <6XP [iXX((Sg»A)iD
— (Zal0) ™" [ DXy exp [<iXk(50)] ZaliXa]

Cabass, FS; 1909.04022



EFT likelihood

® Ve obtain the desired conditional
probability for §,in Fourier space:

p(57) (

A
] o*k)

k0

—1/2

1
2

k

A
1
Z o2 (

£0

k)

|59(k) — 5g,det(k) ‘2

TFinite volume in actual data
-> discrete Fourier representation

FS, Elsner, et al; 1808:02002
Cabass, FS; 1909.04022



EFT likelihood

® Ve obtain the desired conditional
probability for §,in Fourier space:

p(57) (

A
] o*k)

k0

—1/2

1

2

% |
(k)

k0

|59(k) — 5g,det(k) ‘2

TFinite volume in actual data
-> discrete Fourier representation

FS, Elsner, et al; 1808:02002
Cabass, FS; 1909.04022



EFT likelihood

® Ve obtain the desired conditional
probability for §,in Fourier space:

—1/2 - -
A
= | T ]. ]. 2
P (5,[5) (H UZ(k)) exp |~ % a7 190(8) = Foen (k)
k#£0 T k#0 ]
with T
Finite volume in actual data
59,det(k) — Z bOO(k) -> discrete Fourier representation
O

FS, Elsner, et al; 1808:02002
Cabass, FS; 1909.04022



werrfild  Flowchart of the
inference pipeline

A LPT Eul A

Ny Ny Ny Ny
MMV |o=qg+s red

EFT-based 5(1) { |3 (0} {O™} o
forward model: A I PT {OL} o / bo, oi}
density grid
assignment reduction .
filtered Lagrangian Eulerian b EUIeglan.
linear density bias fields bias fields 1o 221 dsnmse likelihood

? n
Porior (3ins0) 0 InP)




werrfild  Flowchart of the
inference pipeline

A LPT Eul A
Ng Ng Ng Ng
EFT-based (1) {M(n) bolz=a+s {Ored}
s — 2 0 | —
forward model: A o | {07 o bo, oi}
density grid /
assignment reduction .
filtered Lagrangian Eulerian b EUIeglan.
linear density bias fields bias fields 1o 221 dsnmse likelihood
+ + scalar
. products [ln 7))
Pprior (5ina 9) 9
A
g
halo
data: EE— 59 — gred
catalog g
density grid

assignment reduction



EFTfeld nterlude: implicit-

likelihood inference (IFI/LFI)

* Use forward model as generator of simulated
(“mock”) data:

A LPT Eul A
Ng Ng Ng Ng
M (n) xr=q+s red
EFT-based 5(1) { |3 [0} N {0} , |
forward model: A {OL} o {bo, i}
LPT N4
density grid
assignment reduction .
filtered Lagrangian Eulerian b Eule(r;an.
linear density bias fields bias fields a8 221 dSnmse likelihood

_* ) + (InP)



LT |nterlude: implicit-
likelihood inference (IFI/LFI)

Beatriz Tucci | PhD Student

parameters nLPT samples + bispectrum
density (deep NIN;
estimator MAF ...)

posterior

Paramete rJ




Interlude: implicit-
likelihood inference (IFI/LFI)

Data vector: power spectrum +
bispectrum (all configurations)

Test on mock data set
generated from same EFT
model

Fixed cosmology

Compare full LFI with

1.0

Gaussian likelihood of data 3.,

0.0

B ,..=A=0.1AMpc~!, D=21 Sample cov

kmax = A =0.1hMpc~!, D=2£Analytical cov Gau SSian
likelihood

B Koo =A=0.1aMpc™!, D=2 Full )

Full LFI

Tucci, FS, in prep.
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Interlude: implicit-
likelihood inference (IFI/LFI)

Data vector: power spectrum +

bispectrum (all configurations)

Test on mock data set
generated from same EFT
model

Fixed cosmology

Compare full LFI with

vector

Gaussian likelihood

underestimates error on by by _

>
N 0

30-40% in this particular case

—

1.0 ‘

Gaussian likelihood of data :.

0.0

1

o &

-10

kmax =A=0.1"Mpc~!, D=2
B k.. =A=0.1"Mpc~!, D=21 Sample cov
B Koo =A=0.1aMpc™!, D=2 Full )

, Analytical cov

{

Gaussian
likelihood

Full LFI

Tucci, FS, in prep.

150 155 | =05 00

by DOm0y

~1.0

bO’U

206 15 20 25

1073P,

05 1.0 0 1 ~10 10

Ces Ce? by




Tests at fixed initial
conditions

® | et’s begin with a thought experiment:

® Ve are given a halo catalog and the normalized

amplitudes of the initial conditions for the matter
density in the same volume 4\"

® Can we infer the cosmological parameters from
this halo catalog!?



Tests at fixed initial
conditions

® | et’s begin with a thought experiment:

® Ve are given a halo catalog and the normalized

amplitudes of the initial conditions for the matter
density in the same volume 4\"

® Can we infer the cosmological parameters from
this halo catalog!?

® Near optimal case: no cosmic variance

® Of course, not a real-world example, but applicable
to halos (or galaxies) in simulations



Tests at fixed initial
conditions

e Specifically, can we recover unbiased 4 (Og)

from a halo catalog (treating bias parameters as
unknown) !

® Perfect degeneracy between b| and Og at linear
order; nonlinear information essential

FS, Cabass, Jasche, Lavaux; arXiv:2004.06707; FS, arXiv:2009.14176



4. inference from dark matter
halos in simulations

Results for all mass bins and redshifts
for A = 0.14h Mpc'!

Relative deviation of maximume-likelihood 1~ — . B
value of Og from ground truth, 0.02} % -
for different perturbative orders : W4 '
VAR
Lbox ~ 7000 MPC/h |g DT 00 * ..... H» + t ....... + ........... I ++ .......... _
= ¢ 2LPT, 0=3 t t
_002- 4 BLPT,0=3 _
A = og + 3LPT,0=14
T plid b 5LPT,0=5 A = 0.14h Mpe ™
O T 00 05 Lo 15 20

<b1 - 1>Dnorm

Proxy for higher-order bias terms

FS, Cabass, Jasche, Lavaux; arXiv:2004.06707; FS, arXiv:2009.14176



4. inference from dark matter
halos in simulations

® Residual error in Og at k <
0.14h/Mpc is <~ |-2%
depending on halos mass
and redshift

® Most likely due to higher-
order bias, and numerical
errors of simulations
(transients)

i

=

<

Results for all mass bins and redshifts
for A = 0.14h Mpc'!

0.021 4 i
_ + *
_ PO #
0.00 _ ..................... * ﬁh’f +i,¢#t ....... + ........... I + .......... _
$ 2LPT.o0=3 yot t
002k 4 BLPT,0=3 )
-+ 3LPT,o0=14
. % 5LPT,0=5 A = 0.14h Mpc -
N 71 S U U S
~0.5 0.0 0.5 1.0 1.5

<b1 - 1>Dn0rm

Proxy for higher-order bias terms

FS, Cabass, Jasche, Lavaux; arXiv:2004.06707; FS, arXiv:2009.14176

2.0



Also works for
(simulated) galaxies

® Apply the same analysis to stellar-mass-
selected galaxies in lllustrisTNG:

Lbox = 300 Mpc/h

No chance to do this using power
spectrum+bispectrum due to

cosmic variance...

Barreira, Lazeyras, FS; arXiv:2105.02876

p—
—

—
-

Fiducial
08 / 03

=
Ne

M, >

10° My /h

- TNG300-1
Galaxies, Hydro

I
—&— All galaxies
—&— Red galaxies
——— Blue galaxies |

<, % 7.

e

_ A =0.2 h/Mpc ¢
0 0.5 1



|deal for studies of
assembly bias

® Fixed-initial-condition analysis allows for
precise measurements of bias parameters

® For example: detecting strong assembly bias
in tidal bias coefficient

Colors: mass bins 94 log M = 13.96
log M = 14.36

) ) looc M = 14.76
Points: bias measured for 5

=

4 concentration quantiles  J .,..2" ------ e
= *
& ’
< —2

Dashed line:“coevolution”
relation

Lazeyras, Barreira, FS, arXiv:2106.14713 b,



BAQO inference

® |agrangian perturbation theory based forward model
incorporates precise local evolution of BAO scale

® Fixed phases (IC) -> best possible BAO
reconstruction

® Trick: shift BAO scale in IC by rescaling:

Py, (k, B) _ 14 Asin(kBraq) exp(—k/kp)
Prq (k) 1 4+ Asin(krgq) exp(—k/kp)

fi(k,B) =

Babic, FS, Tucci, arXiv:2203.06 177



BAQO inference

® |agrangian perturbation theory based forward model
incorporates precise local evolution of BAO scale

® Fixed phases (IC) -> best possible BAO

reconstruction

1.04
1.02 A

B: ratio of inferred to *

fiducial isotropic BAO @ 1.00 --#——— -— ——-’_\-——-*)

scale 7 ' : .
0.98 - s

* z—1

0.96 &

0.10 0.16 0.20 025 0.30
A [hMpc™!]

Babié, FS, Tucci, arXiv:2203.06177 (a) log,o(M/h™'Mg) = 12.5 — 13.0



BAQO inference

® |agrangian perturbation theory based forward model
incorporates precise local evolution of BAO scale

® Fixed phases (IC) -> best possible BAO
reconstruction

® Comparison with (pre-reconstruction) P(k)

4.0

Ratio of error bars on ® 200
inferred BAO scale: P(k) 07 A 205 0
over field-level EFT B0 W=
L 25 -
z A
Both for fixed phases. o 207 x O
151 m & e
Factor |.5-3 improvement over 101
no-reconstruction P(k) analysis. 0.10 0.12 0.14 0.16 018 0.20
A [pMpc?]

Babic, FS, Tucci, arXiv:2203.06 177 (a) log,o(M/h™*Mg) = 12.5 — 13.0



Redshift-space

distortions

® Notoriously difficult/cumbersome

® |n forward model, can perform
transformation to redshift space
non-perturbatively

Lagrangian frame

Eulerian frame

1
31\/f
{0}

Oini, A

A
|
|
|

Stadler, FS,Reinecke, arXiv:2303.09876 { S

Redshift space

1 + bso
{OFoss

1+ s
(1 —|—5) u||/f
(1+6) {O"}p| \

1+ bsd
147

77 1o
| 0#5 |

> 5g,det

R

Ug det|| T




Redshift-space
distortions

o : lg M}, /Mg € [12.5,13.0]
velocity-induced bias i n
at leading-order ® A = 0.14h Mpc™

® Notoriously difficult/cumbersome

® |n forward model, can perform
. . relocity-induced bias witl
transformation to redshift space highororder contributions | —e—
non-perturbatively

velocity bias at leading-order | ——e—

® Velocity bias important:

Ug det)| (T, 7) = uy (2, 7) + > By (7) U (,7)
U

baseline - —_—

® |n standard approach, absorbed

velocity bias at

i n h |gh er- d (S I”ivative next-to-leading order
contributions, but not I
sufficiently accurate  vLagrangian frame X AT/
1 T ) [ 1+ )
, bsd -
A KIS = IS o BRI S P
{OL}LD L |(1+9) {O"}p a | {O O#6

Stadler, FS,Reinecke, arXiv:2303.09876 ( i ) S Ug det|| 7




How much information
is there actually?

® How much does the tiny,
A0g << |% error blow up
once we marginalize over
phases (initial conditions)?



How much information
is there actually’

® How much does the tiny,
A0g << |% error blow up

once we marginalize over
phases (initial conditions)?

® Full HMC sampling results
for mocks generated with

—— A =0.1hMpc!; FIXEDIC
—— A=0.1hMpc™!; FREEIC

—— A =0.14hMpc!; FIXEDIC
—— A =0.14hMpc ! FREEIC

the same model, but different
CUtOﬁ;S NAmock > Ninference

59530@ Q?*/@

Kostic, Nguyen, FS, Reinecke, arXiv:2212.07875

%Q
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How much information
is there actually’

® How much does the tiny,
A0g << |% error blow up
once we marginalize over
phases (initial conditions)?

—— A =0.1hMpc!; FIXEDIC
—— A=0.1hMpc™!; FREEIC

—— A =0.14hMpc!; FIXEDIC
—— A =0.14hMpc ! FREEIC

® Full HMC sampling results
for mocks generated with
the same model, but different

CUtOﬁ;S Amock > Ninference




How much information
is there actually’

® How much does the tiny,
A0g << |% error blow up
once we marginalize over
phases (initial conditions)?

® Full HMC sampling results
for mocks generated with
the same model, but different

CUtOﬁ;S Amock > Ninference

® Fisher forecast indicates
that Og (<=> Q) constraint
improves by factor ~5 over
bower spectrum-+bispectrum

(A=0.14)

Kostic, Nguyen, FS, Reinecke, arXiv:2212.07875

—— A =0.1hMpc!; FIXEDIC
—— A=0.1hMpc™!; FREEIC

—— A =0.14hMpc!; FIXEDIC
—— A =0.14hMpc ! FREEIC




—— A =0.1hMpc ! FIXEDIC
—— A =0.1hMpc ! FREEIC
—— A =0.14hMpc ! FIXEDIC
—— A =0.14hMpc!; FREEIC

0.018

a = 0.984

-1Gpc)?

V=8

Kostic, Nguyen, FS, Reinecke, arXiv:2212.07875



OLEF%M@
Conclusions

® [wo main messages:

® We can deal with complexities of galaxies
rigorously on large scales -> EFT

® There is much more (trustable) information
in galaxy clustering than what we are using
so far -> full inference™® and/or new data

summaries

* For full disclosure: we still see issues when applying to fully nonlinear tracers
(halos and high-A mocks).



