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The standard approach to shear analysis
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The standard approach to shear analysis

- Galaxy'shapes
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The standard approach to shear analysis
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s the standard approach enough?

The standard approach misses information!

Cosmic web

Gaussian random field

P(k) [h~3 Mpc?]
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s the standard approach enough?

The standard approach misses information!
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Cosmic web

Gaussian random field

P(k) [h~3 Mpc?]

103 4

102 A

101 4

10-1 10°
k [h Mpc™1]

- Higher-order statistics: what are the sampling distributions? And covariance matrix?
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s the standard approach enough?

The standard approach misses information!
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Cosmic web

Gaussian random field

P(k) [h~3 Mpc?]
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- Higher-order statistics: what are the sampling distributions? And covariance matrix?

- Field-based approach without data compression of the pixelised shear.
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The field-level approach
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The field-level approach

Predicted Field-level

Cosmology forward | shearfield ~  Statistics

<«—>» Data

model

Statistics pixel by pixel can access all the information

Probabilistic forward model — Simulations are constrained by the data
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The field-level approach

Predicted Field-level

Cosmology forward | shearfield ~  Statistics

<«—>» Data

model

Statistics pixel by pixel can access all the information

Probabilistic forward model — Simulations are constrained by the data

BORG framework: gravity model
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The forward model of BORG-WL

Tidal field Intrinsic alignments

—_—
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Uniform prior Gaussian prior

Reduced shear Predlcted shear

Initial conditions  Evolved density

Cosmological
parameters

¢ .: leehhood
at field level

Baryon feedback
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The forward model of BORG-WL

Tidal field

Uniform prior Gaussian prior

Initial conditions  Evolved density

Cosmological
parameters

Baryon feedback

A

Intrinsic alignments

Reduced shear

<> data

T

- Likelihood
at field level

Sensitivity to cosmology:

e Initial matter power spectrum
e Growth of structures
 Geometry
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Intrinsic alignments: Tidal alignment and tidal torquing

». .
-

Density ' 7 Observaples: . i

TATT model includes linear (tidal alighnment) and quadratic (tidal torque) terms

Vi (r,#) = (C1 + C160) (5xx — YY) + Ca(SxkSxk = SykSyk)
yiA(r,ﬂ) = 2(C1 1 C155)Sxy I 2C2Skayk,
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Baryon feedback: Enthalpy gradient descent model

Displaces dark matter particles with

B kpTy v =
Sparyons =~ -V [05(1+8)]77

H? u vy-

Assumes power law equation of state of baryons 7T(0) = Tp(1 + 65)7_1

. a2

Dai & Seljiak, 2018
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Baryon feedback: Enthalpy gradient descent model

Displaces dark matter particles with

Dai & Seljiak, 2018

- Self calibration of model parameters.
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Baryon feedback: Enthalpy gradient descent model

Displaces dark matter particles with

Dai & Seljiak, 2018

- Self calibration of model parameters.

- Displaces particles independently of whether they are in a halo.
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Baryon feedback: Enthalpy gradient descent model

Displaces dark matter particles with

Dai & Seljiak, 2018

- Self calibration of model parameters.

- Displaces particles independently of whether they are in a halo.

- Fully differentiable.
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The likelihood

Tidal field

Intrinsic alignments

_>

Evolved density

Uniform prior Gaussian prior

Initial conditions Reduced shear

Cosmological
parameters

Baryon feedback

2 Ry T
,‘é“_. %

Predicted shear

! Likelihood

at field level

Likelihood: Assuming Gaussian noise in pixelised shear
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The likelihood

-~

\_

Uniform prior

Cosmological
parameters

Gaussian prior

Initial conditions

Baryon feedback

Tidal field

Intrinsic alignments

Predicted shear

" Likelihood

at field level

Likelihood: Assuming Gaussian noise in pixelised shear

~b

— €
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) * (Ez,mn
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)2

2
Ip

Doesn’t need covariance matrix! o0} = 0e¢/VNp.
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The likelihood

/ Tidal field Intrinsic alignments \

Uniform prior Gaussian prior

Reduced shear Predicted shear

Initisdconditions  Evolved density

Cosmological
parameters

\ Baryon feedback

Likelihood: Assuming Gaussian noise in pixelised shear

T T

| (El,mn E],mn) = (EZ,mn 2,mn)
PG 2
b mn T

Doesn’t need covariance matrix! o0} = 0e¢/VNp.
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Sampling efficiently in a high-dimensional space

- Addresses curse of dimensionality by:
Hamiltonian Monte Carlo

(initial conditions) - exploiting information in gradients

- using conserved quantities

Gibbs sampling

Simple MCMC
- cosmological parameters
- |A parameters

- baryon parameters |
N y
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[ The proof of concept Results with synthetic data ]
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[ The proof of concept Results with synthetic data ]

How much do we get from going to the field level?
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Simulated data

Tomographic bins
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redshift, z

Gravity model: LPT.
Gaussian pixel-noise: 30 sources per square arcmin.

Intrinsic alignment amplitudes: DES values
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Comparison of cosmology constraints

; angular power spectra
15 BORG-WL

-

0.4
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Qn

(1 Gpc/h)?, 4.5 Gpc/h
(16 deg)?, 13 arcmin
LPT

Field-level approach lifts degeneracy by extracting more information from the data

Porqueres+2023
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Comparison of cosmology constraints

marginal error
3 times smaller

0.4

127

angular power spectra
BORG-WL
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(1 Gpc/h)?, 4.5 Gpc/h
(16 deg)?, 13 arcmin
LPT

marginal error
5 times smaller

0.6 0[3‘\_>

Field-level approach lifts degeneracy by extracting more information from the data

Porqueres+2023

Natalia Porqueres



Intrinsic alignment parameters

—— truth
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Intrinsic alignment parameters

—— truth

=== 68.3% credible interval
----- 95.4% credible interval

[ posterior
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1.2

angular power spectra
BORG-WL
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Baryon feedback parameters

(0.1 Gpc/h)%,2.5 Gpe/h
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LPT
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Posterior distribution baryon parameters
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arcmin

Projection of inferred density fields
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degrees

degrees

How can we test the results with such high dimensionality?

Posterior predictive tests: Can the inferred quantities explain the data?
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The current state of BORG

Currently supported data

P
Galaxy clustering
(Jasche et al 2012)
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Cosmic shear
(NP et al 2021)
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Velocity tracers

(Prideaux et al 2022)

Lyman-a forest
(NP et al 2019)

Generated data products
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Multiple probe analysis will become possible at field level

0.4
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The current state of BORG

Generated data products
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Velocity tracers

JPrideaux et al 2022)

Proof of concept

Lyman-a forest
(NP et al 2019)

So.s

Multiple probe analysis will become possible at field level

0.4
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The current state of BORG

Generated data products

R A e i

Currently supported data
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2 Velocity tracers

S | (Prideaux et al 2022)
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o  Lyman-a forest

o (NP et al 2019)

So.s

Multiple probe analysis will become possible at field level
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[ The challenge Dealing with systematics ]
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Calibration systematics: robust n(z)

We need to propagate the redshift uncertainty to the cosmology results

Bayesian hierarchical model to sample n(z) and marginalise over redshift uncertainties

Using forward model of the photometric fluxes (Leistedt+ 2016)

0.0 0.5 1.0 15 2.0
Kyriacou, Heavens+ in preparation
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Calibration systematics on the sky (survey depth)

- Variable depth

- Variable seeing (PSF)

- Variation in source galaxy and redshift distribution

Natalia Porqueres



Unknown systematics

Assuming amplitude of patch is unknown

Porqueres+ 2019
Lavaux, Jasche & Leclerg, 2019

For a Poisson likelihood:

N;
Moy e T 11 (Z - Aj)

patch i€patch jEpatch
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Unknown systematics

Assuming amplitude of patch is unknown

P(k) [h™* Mpc?]
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Porqueres+ 2019
Lavaux, Jasche & Leclerg, 2019

For a Poisson likelihood:

pNH{M < [T 11

patch i€patch

-« Prior power spectrum
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MCMC step
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(b) Standard Poissonian likelihood
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Summary

e There is more information in the data that the
2-point summary statistics do not capture.

» Field-based approach lifts degeneracy and
reduces marginal error up to a factor of 5.

e What's next?
First real data analysis with BORG-WL

1.2

1.07 |

0.6

0.4

BORG-WL

0.2

0.4

Qm

0.6 0.8
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Can we define a summary that extracts as much information?

—
Input: 128128 —
(32x32x 4n;)
(BxBx 4n;)
(2x2x 4ny)
(1x1x 2ng)
ED Nsummaries
i |m B ~
o | B
s fid 1 a .
67" =< S a_ ' T | Cr.lfal—> Faﬁ
L -
I—' o
o
L | —_— — E———
InceptBlock + LeakyRelu Conv1x]+ LeakyRelu
dfid x5 fid
.

I\

Lot

Information Maximising Neural Networks (Charnock+2018)

Compress data keeping Fisher matrix intact

92 In L (d|9)
F“‘B(ﬂ):—< 99,00 5 >

9 = 9fid

Lucas Makinen
(Imperial College)
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Posterior distribution Cls vs BORG-WL

angular power spectra
BORG-WL

A2
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Model misspecification intrinsic alignments

angular power spectra angular power spectra
12 BORG-WL 12 BORG-WL

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
nm Dm

data: TATT, analysis: TATT data: TATT, analysis: NLA
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Robust likelihood (Porqueres, Ramanah, Jasche, Lavaux, 2018)

Modified complete
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Robust likelihood: SDSS-III analysis

(Lavaux, Jasche, Leclercq, 2019)

103 -

1.050 1
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0.950 -

1072 1071
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0.7 Multlpilcatwe 13

correction

Natalia Porqueres



Validating the results of a real data analysis

Posterior predictive tests and cross-validation with independent measurements

- do we get the clusters we know are there?

- do we get the expected mass profiles?

- are the inferred IC compatible with CMB?

V[10*(Mpch~1)3]
0.05 0.42 1.41 3.35 6.54 11.31

Coma cluster

L

10° B

dec [12000]

el

M(r) [L0*®h =1 M)

1071
] Geller et al 1999

Kubo et al 2007
Hughes 1989
The & White 1986
Colless 2006
Gavazzi et al. 2009
Falco et al. 2014

! !

\

>+ 2 e

102

5 10 15 20 25 30
AMpc/h]

-0 v '. k.
logyoltph)
— o .
187.5 190.0 1925 195.0 197.5 200.0 2025 205.0
ra [j2000]

Jasche & Lavaux 2019 Jasche & Lavaux 2019
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More realistic gravity model: Particle-mesh in BORG

Particle mesh is ready and has been used in real data BORG analysis (2M++)

300 4

z=35 z=17

z=8.
200

100
0 -

-100

Supergalactic ¥ (h~! Mpc)

=200 -

=300 -

300 +

200

100

-100

Supergalactic Y (h~" Mpc)

—-200 1

=300 -

=300 =200 =100 O 100 200 300-300 -200 =100 O 100 200 300-300 -200 -100 O 100 200 300
Supergalactic X (h~! Mpc) Supergalactic X (k=1 Mpc) Supergalactic X (h~! Mpc)

Jasche & Lavaux 2019
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What if the models of systematics are not good enough?

Machine learning can help connecting physical models to data
Neural physical engines . fully Bayesian way of using NN in MCMC inference
- encoding symmetries to reduce dimensionality

- inferring NN parameters from data. No training data!

An example in BORG: Emulating high resolution N-body

Initial conditions Reference LR density field

Natalia Porqueres



Table of cosmological constraints

Power spectra  BORG-WL

+0.5 +0.07
Qp 0-3_0_2 0-34_0_05 Factor 5
o3 0.6'{_'%‘2 0.79"_'%‘ 1111 Factor 3
+0.15 +0.10 Factor 1.2
53 0.80Z5 1 0.837 10
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Where does the information come from?

For a log-normal field:

0.70

0.60-
Field-based approach: more precise

for even nearly Gaussian fields.

Leclercq & Heavens (2021)

050 075 1.00 125 150 L.75
oy

BN 2PCF, likelihood-based analysis
B 2PCF, simulation-based inference (£ = 0.03)

B Full field, data assimilation
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Convergence test and correlation length

Gelman-Rubin test < 1.04 for all
cosmological parameters

autocorrelation

0 10000 20000 30000 40000 50000 60000 70000 80000
samples
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Trace plots

0 10000 20000 30000 40000 50000 60000 70000 80000
sample number
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Zape

Comparison between field-based approaches (J. Jasche)

Gaussian Log—normal—Poisson 2LPT-Poisson
0.3 . . : . 0.3 r v : T r 0.3 : : . r .
ARES HADES BORG =
0.2} 0.2} 0.2} {®4.0
0. [HN maperts B8 % 01f  arTA s L% 0.1 aa s B 1832
R 2 L = Lt TR = -4 b P
0.0 J" A 1; - 2 0.0 '-"h o f 1 ;, - £ 00 ' i ‘_.'"-: : . ‘ 52-4 =
S . 9., - 3 - ol % - . = el L 4 816
) B T L " . b ikt @ = 'ﬂ’ - 4
—0.1f R ¥ e - 0.1 PE ¥ Hre - ~0.1F ™ § & - ]
. ol . ‘... . " 10.8
-0.2} s -0.2} M’ ~0.2 . 10.0
| | i , , _ | , | ; |-08
03302 —01 00 o1 03 %303 —02 —01 00 01 02z 03 03 —02 —01 00 01 02z 03
yGpe/h| z[Gpe/h] z|Gpe/h|
a.k.a: Wiener-filtering log-normal-filtering
Zaroubi et al. 1994 Kitaura 2010 Jasche&Wandelt 2012
Erdogdu et al. 2004 Jasche & Kitaura 2010
Kitaura & Ensslin 2008
Grannet et al. 2015
Which scheme performs best? ARES ~ HADES  BORG
ARES 0 -219580.31 -383482.25
Ask the datal HADES 219580.31 0 -163901.94
BORG 383482.25 163901.94 0.

Aij = In(Pd|5)) — In (P(d|5)))
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Wiener filter Forward modeling

D

lines of sight ~u

Matter
field

Gravitational evolution
provides additional

constraints on the possible
fields
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Hamiltonian Monte Carlo

Define potential Y = —In(P(x))

Define Hamiltonian H = %pTM_lp + @b(:{:)

Use mechanics:

(z,p) —>

. _ - /
Randomise momentum and accept o = min/[1, e (H-H )} =1

dX

ap

dt

X _ 9H
dt

_ aa—1
p = M 'p
_0H _ _ oY(x)
oxX 0X

—> (2/,p")
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Slice sampler

MCMC algorithm

RS
I I 1 I 1
L T T “““““““““
xﬂ
T 1
1
(£) s TT T
X X
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Test with mask
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CMB lensing

(Lavaux, Jasche & Leclercq, 2019)

Keaneri % 1074)

Planck 18 xBORG (SDSS3-B0OSS)

_1.0 I T |
-1.0 -0.5 0.0 i 1.0
Ksorg(x1072)
SDSS-111/BOSS
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Sampling efficiently in a high-dimensional space

Define potential ¥ = — In(P(x))
Hamiltonian Monte Carlo

- density field Hamiltonian H = %pTM_lp + ()
Use mechanics to solve a statistical problem:
dX _ 8H _ ngp—1
@ —p=-MP
I D
Slice sampler dp oH ()

- cosmological parameters dt — T 90X — T T o8X

- nuisance parameters

- systematics

&

/) Addresses curse of dimensionality by
- exploiting information in gradients
- using conserved quantities

Natalia Porqueres



The challenge for upcoming surveys

Upcoming surveys will provide large volumes of high-quality data.
— unprecedented statistical power.

— great potential for discoveries.

But...
— existing methods are reaching their limits.

— good control of systematics becomes paramount.

We need new data analysis techniques to fully realise the potential of these surveys.

- Higher-order statistics: what are the sampling distributions? And covariance matrix?

- Field-based approach without data compression of the pixelised shear.

Natalia Porqueres
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