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Galaxy shapes
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Cosmic web Gaussian random field

- Higher-order statistics: what are the sampling distributions? And covariance matrix?

- Field-based approach without data compression of the pixelised shear.
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Predicted
shear field

Field-level 
Statistics DataCosmology

Forward 
model

Statistics pixel by pixel can access all the information

Probabilistic forward model → Simulations are constrained by the data

BORG framework: gravity model
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The forward model of BORG-WL
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Sensitivity to cosmology:
● Initial matter power spectrum
● Growth of structures
● Geometry



  

Intrinsic alignments: Tidal alignment and tidal torquing

Natalia Porqueres

TATT model includes linear (tidal alignment) and quadratic (tidal torque) terms 

Density Observables

Blazek+ 2017



  

Baryon feedback: Enthalpy gradient descent model

Displaces dark matter particles with

Assumes power law equation of state of baryons
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Dai & Seljiak, 2018
- Self calibration of model parameters.

- Displaces particles independently of whether they are in a halo.

- Fully differentiable.
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Doesn’t need covariance matrix!
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Sampling efficiently in a high-dimensional space

Natalia Porqueres

Simple MCMC
- cosmological parameters
- IA parameters
- baryon parameters

Addresses curse of dimensionality by:

- exploiting information in gradients

- using conserved quantities

Hamiltonian Monte Carlo 
(initial conditions)

Gibbs sampling
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The proof of concept Results with synthetic data

How much do we get from going to the field level?



  

Simulated data

Gravity model: LPT.

Gaussian pixel-noise: 30 sources per square arcmin.

Intrinsic alignment amplitudes: DES values (0.18, 0.8, 0.1)

1 Gpc/h (16 deg)2

(15 Mpc/h, 13 arcmin)

1 Gpc/h

4.5 Gpc/h

Natalia Porqueres

Tomographic bins



  

Comparison of cosmology constraints

Field-level approach lifts degeneracy by extracting more information from the data
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(1 Gpc/h)2, 4.5 Gpc/h
(16 deg)2, 13 arcmin

LPT

Porqueres+2023
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marginal error 
5 times smaller

marginal error 
3 times smaller

(1 Gpc/h)2, 4.5 Gpc/h
(16 deg)2, 13 arcmin

LPT

Porqueres+2023



  

Intrinsic alignment parameters
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Intrinsic alignment parameters
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No IA       IA



  

Baryon feedback parameters
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self-consistent model misspecification

(0.1 Gpc/h)2,2.5 Gpc/h
(3 deg)2, 5 arcmin

LPT



  

Posterior distribution baryon parameters
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Projection of inferred density fields
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How can we test the results with such high dimensionality?

Natalia Porqueres

Posterior predictive tests: Can the inferred quantities explain the data?



  

The current state of BORG
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BORG

Galaxy clustering
(Jasche et al 2012)

Cosmic shear
(NP et al 2021)

Velocity tracers
(Prideaux et al 2022)

Lyman-α forest
(NP et al 2019)

Currently supported data

Generated data products

Multiple probe analysis will become possible at field level
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The challenge Dealing with systematics



  

Calibration systematics: robust n(z)

Natalia Porqueres

We need to propagate the redshift uncertainty to the cosmology results

Bayesian hierarchical model to sample n(z) and marginalise over redshift uncertainties 

Using forward model of the photometric fluxes (Leistedt+ 2016)

Kyriacou, Heavens+ in preparation



  

Calibration systematics on the sky (survey depth)

Natalia Porqueres

- Variable depth

- Variable seeing (PSF)

- Variation in source galaxy and redshift distribution

Joachimi+ 2020



  

Unknown systematics
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Porqueres+ 2019
Lavaux, Jasche & Leclerq, 2019Assuming amplitude of patch is unknown

For a Poisson likelihood:
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Summary

● There is more information in the data that the 
2-point summary statistics do not capture.

● Field-based approach lifts degeneracy and 
reduces marginal error up to a factor of 5.

● What’s next? 
First real data analysis with BORG-WL

Natalia Porqueres



  

Can we define a summary that extracts as much information?

Lucas Makinen
(Imperial College)

Natalia Porqueres

Information Maximising Neural Networks (Charnock+2018)

Compress data keeping Fisher matrix intact



  

Posterior distribution Cls vs BORG-WL
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Model misspecification intrinsic alignments
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Robust likelihood (Porqueres, Ramanah, Jasche, Lavaux, 2018)
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Robust likelihood: SDSS-III analysis (Lavaux, Jasche, Leclercq, 2019)
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Validating the results of a real data analysis

Natalia Porqueres

Posterior predictive tests and cross-validation with independent measurements 

- do we get the clusters we know are there?

- do we get the expected mass profiles?

- are the inferred IC compatible with CMB? 

Coma cluster

Jasche & Lavaux 2019 Jasche & Lavaux 2019



  

More realistic gravity model: Particle-mesh in BORG

Particle mesh is ready and has been used in real data BORG analysis (2M++)

Natalia Porqueres

Jasche & Lavaux 2019



  

What if the models of systematics are not good enough?

Machine learning can help connecting physical models to data

Neural physical engines (Charnock+ 2019): fully Bayesian way of using NN in MCMC inference

- encoding symmetries to reduce dimensionality

- inferring NN parameters from data. No training data!

Natalia Porqueres

An example in BORG: Emulating high resolution N-body

Charnock+ 2019



  

Table of cosmological constraints

Factor 5 

Factor 3 

Factor 1.2
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Where does the information come from?

Leclercq & Heavens (2021)

For a log-normal field:

Field-based approach: more precise 
for even nearly Gaussian fields.

Natalia Porqueres



  

Convergence test and correlation length

Natalia Porqueres

Gelman-Rubin test < 1.04 for all 
cosmological  parameters



  

Trace plots
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Comparison between field-based approaches (J. Jasche)

Natalia PorqueresNatalia Porqueres



Wiener filter

lines of sight

Matter
field

Forward modeling

Gravitational evolution 
provides additional 
constraints on the possible 
fields

Natalia Porqueres



  

Define potential

Define Hamiltonian

Use mechanics:

Randomise momentum and accept 

Hamiltonian Monte Carlo

Natalia Porqueres



  

Slice sampler

MCMC algorithm

Natalia Porqueres



  

Test with mask

Inferred quantities 
explain data to sub-noise 

level

Residuals

Natalia Porqueres



  

CMB lensing

(Lavaux, Jasche & Leclercq, 2019)

SDSS-III/BOSS

Natalia Porqueres



  

Sampling efficiently in a high-dimensional space

Natalia Porqueres

Hamiltonian Monte Carlo 
- density field

Slice sampler
- cosmological parameters
- nuisance parameters
- systematics

Define potential

Hamiltonian

Use mechanics to solve a statistical problem:

Addresses curse of dimensionality by
- exploiting information in gradients
- using conserved quantities



  

The challenge for upcoming surveys

Natalia Porqueres

Upcoming surveys will provide large volumes of high-quality data.

→ unprecedented statistical power.

→ great potential for discoveries.

But…

→ existing methods are reaching their limits.

→ good control of systematics becomes paramount.

We need new data analysis techniques to fully realise the potential of these surveys.

- Higher-order statistics: what are the sampling distributions? And covariance matrix?

- Field-based approach without data compression of the pixelised shear.
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