

# Kinetic Field Theory – frequently asked questions and answers

Elena Kozlikin

Institute for Theoretical Physics, U. Heidelberg

with T. Daus, R. Lilow, N. Reinhardt, M. Bartelmann and many others



- Where is linear growth hidden in KFT?
- What is the difference to SPT?
- Is it possible to implement modified gravity theories in the KFT framework?

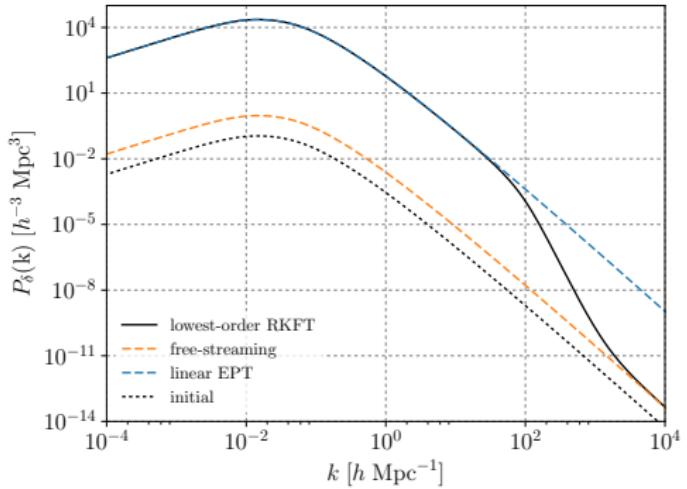
- Where is linear growth hidden in KFT?
- What is the difference to SPT?
- Is it possible to implement modified gravity theories in the KFT framework?

- Where is linear growth hidden in KFT?
- What is the difference to SPT?
- Is it possible to implement modified gravity theories in the KFT framework?

Where is linear growth hidden in KFT?

Does one get linear growth from purely Newtonian particle dynamics?

# Recover linear growth (and beyond)



R. Lilow et al. 2019

N initially correlated particles



Hamiltonian e.o.m with

$$H = H_0 + H_I$$


$$q_0(t) = q^{(i)} + p^{(i)}(t - t^{(i)})$$


$$V(q) = \sum_{i,j} \frac{1}{|q_i - q_j|}$$

$$t = \int \frac{da}{a^3 H}$$

# Recover linear growth

0 :



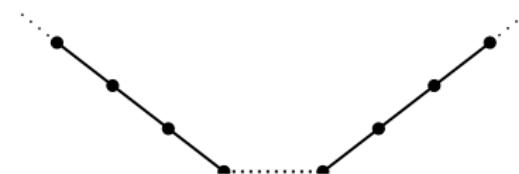
1 :



2 :



linear:



# Microscopic particle system

$$Z = \int d\Gamma_i \int \mathcal{D}\Phi e^{iS_0[\Phi] + iS_I}$$

$$iS_I = -\frac{i}{2} \Phi \cdot \sigma \cdot \Phi$$

Klimontovich phase-space density and response field:

$$\Phi = \begin{pmatrix} \Phi_\rho \\ \Phi_B \end{pmatrix} \propto \begin{pmatrix} \sum_j \delta_D(x - x_j) \\ \sum_j \chi_{p_j} \nabla_q \delta_D(x - x_j) \end{pmatrix}$$

,

$$\sigma \propto \begin{pmatrix} 0 & v(r) \\ v(r) & 0 \end{pmatrix}$$

# Hubbard-Stratonovich transformation:

HS converts microscopic particle theory into macroscopic field theory

$$e^{-\frac{i}{2}\Phi \cdot \sigma \cdot \Phi} = \mathcal{N} \int \mathcal{D}\psi e^{i\psi \cdot \sigma^{-1} \cdot \psi - i\psi \cdot \Phi}$$

# Macroscopic field theory

introduce macroscopic fields:

$\psi = (\psi_B, \psi_\rho)$ , conjugate to  $\Phi = (\Phi_\rho, \Phi_B)$

# Macroscopic field theory

introduce macroscopic fields:

$\psi = (\psi_B, \psi_\rho)$ , conjugate to  $\Phi = (\Phi_\rho, \Phi_B)$

$$Z = \mathcal{N} \int d\Gamma_i \int \mathcal{D}\Phi e^{iS_0[\Phi]} \int \mathcal{D}\psi e^{i\psi \cdot \sigma^{-1} \cdot \psi - i\psi \cdot \Phi}$$

# Macroscopic field theory

introduce macroscopic fields:

$\psi = (\psi_B, \psi_\rho)$ , conjugate to  $\Phi = (\Phi_\rho, \Phi_B)$

$$Z = \mathcal{N} \int d\Gamma_i \int \mathcal{D}\Phi e^{iS_0[\Phi]} \int \mathcal{D}\psi e^{2i\psi_\rho \cdot v^{-1} \cdot \psi_B - i\psi_\rho \cdot \Phi_B - i\psi_B \cdot \Phi_\rho}$$

# Macroscopic field theory

introduce macroscopic fields:

$$\psi = (\psi_B, \psi_\rho), \text{ conjugate to } \Phi = (\Phi_\rho, \Phi_B)$$

$$\begin{aligned} Z &= \mathcal{N} \int d\Gamma_i \int \mathcal{D}\Phi e^{iS_0[\Phi]} \int \mathcal{D}\psi e^{2i\psi_\rho \cdot v^{-1} \cdot \psi_B - i\psi_\rho \cdot \Phi_B - i\psi_B \cdot \Phi_\rho} \\ &= \tilde{\mathcal{N}} \int d\Gamma_i \int \mathcal{D}\Phi e^{iS_0[\Phi]} \int \mathcal{D}\psi_B \mathcal{D}\tilde{\psi}_\rho e^{i\tilde{\psi}_\rho \cdot \psi_B - \frac{i}{2}\tilde{\psi}_\rho \cdot v \cdot \Phi_B - i\psi_B \cdot \Phi_\rho} \end{aligned}$$

$$\begin{aligned} Z &= \tilde{\mathcal{N}} \underbrace{\int \mathcal{D}\psi e^{-i\psi_\rho \cdot \psi_B}}_{\text{macroscopic}} \underbrace{\int d\Gamma_i \int \mathcal{D}\Phi e^{iS_0[\Phi]} e^{\frac{i}{2}\psi_\rho \cdot v \cdot \Phi_B + i\psi_B \cdot \Phi_\rho}}_{\text{microscopic } Z_\psi} \\ &= \tilde{\mathcal{N}} \int \mathcal{D}\psi e^{-i\psi_\rho \cdot \psi_B - iW_\psi} \end{aligned}$$

$$W_\psi := \ln(Z_\psi)$$

$$\begin{aligned}
 Z &= \tilde{\mathcal{N}} \underbrace{\int \mathcal{D}\psi e^{-i\psi_\rho \cdot \psi_B}}_{\text{macroscopic}} \underbrace{\int d\Gamma_i \int \mathcal{D}\Phi e^{iS_0[\Phi]} e^{i\frac{1}{2}\psi_\rho \cdot v \cdot \Phi_B + i\psi_B \cdot \Phi_\rho}}_{\text{microscopic } Z_\psi} \\
 &= \tilde{\mathcal{N}} \int \mathcal{D}\psi e^{-i\psi_\rho \cdot \psi_B - iW_\psi}
 \end{aligned}$$

$$W_\psi := \ln(Z_\psi)$$

$$W_\psi \propto \sum_{n_\beta, n_\rho=0}^{\infty} (\psi_B)^{n_\beta} (\psi_\rho)^{n_\rho} (\sigma_{\rho B})^{n_\beta} G_{\rho \dots \rho B \dots B}^{(0)} (1, \dots, n_\beta, 1', \dots, n'_\rho)$$

$$\begin{aligned}
 Z &= \tilde{N} \underbrace{\int \mathcal{D}\psi e^{-i\psi_\rho \cdot \psi_B}}_{\text{macroscopic}} \underbrace{\int d\Gamma_i \int \mathcal{D}\Phi e^{iS_0[\Phi]} e^{\frac{i}{2}\psi_\rho \cdot v \cdot \Phi_B + i\psi_B \cdot \Phi_\rho}}_{\text{microscopic } Z_\psi} \\
 &= \tilde{N} \int \mathcal{D}\psi e^{-i\psi_\rho \cdot \psi_B - iW_\psi}
 \end{aligned}$$

$$W_\psi := \ln(Z_\psi)$$

$$\begin{aligned}
 W_\psi &\propto 1 + \psi_B \sigma_{\rho B} G_{BB}^{(0)} \psi_B + \psi_\rho G_{\rho\rho}^{(0)} \psi_\rho + 2 \psi_B \sigma_{\rho B} G_{\rho B}^{(0)} \psi_\rho \\
 &\quad + \psi_B \sigma_{\rho B} G_{\rho\rho B}^{(0)} \psi_\rho \psi_\rho + \dots
 \end{aligned}$$

split action:

$$S \stackrel{!}{=} S_{\text{tree}} + S_{\text{vertex}}$$

$$iS_{\text{tree}} = -\frac{1}{2} \psi \cdot D^{-1} \cdot \psi$$

$$Z[M] = e^{i\hat{S}_{\text{vertex}}} \int \mathcal{D}\psi e^{-\frac{1}{2} \psi \cdot D^{-1} \cdot \psi + iM \cdot \psi}$$

$$Z[M] = e^{i\hat{S}_{\text{vertex}}} \int \mathcal{D}\psi e^{-\frac{1}{2}\psi \cdot D^{-1} \cdot \psi + iM \cdot \psi}$$

$$G_{\rho\rho} = D_{\rho\rho} + \text{terms involving vertices}$$

$$D_{\rho\rho} = D_R \cdot G_{\rho\rho}^{(0)} \cdot D_A$$

resummed propagators  $D_R$ ,  $D_A$  contain infinite orders of interactions!

# To recover linear growth...

$$Z[M] = e^{\hat{i}S_{\text{vertex}}} \int \mathcal{D}\psi e^{-\frac{1}{2}\psi \cdot D^{-1} \cdot \psi + iM \cdot \psi}$$

$$G_{\rho\rho} = D_{\rho\rho} + \underbrace{\text{terms involving vertices}}$$

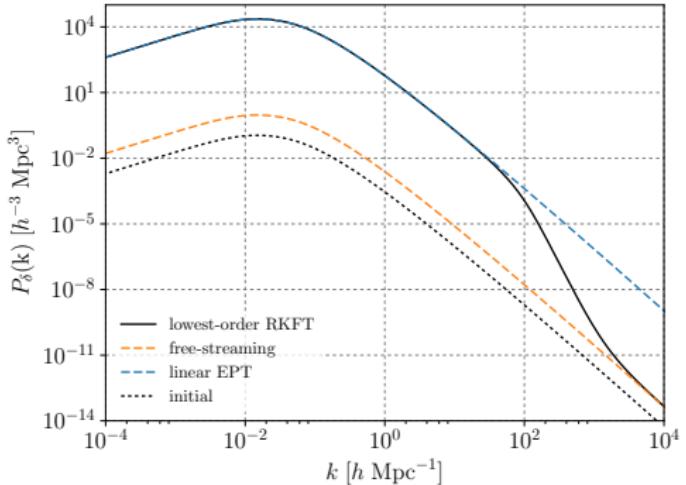
$$D_{\rho\rho} = D_R \cdot G_{\rho\rho}^{(0)} \cdot D_A$$

Expand initial conditions in terms of  $P_\delta^{(i)}$

$$G_{\rho\rho}^{(0)} \propto P_\delta^{(i)} + \underbrace{P_\delta^{(i)} P_\delta^{(i)}}_{+} + \dots$$

$$\Rightarrow P_\delta(k, t) = \frac{D_+(t)}{D_+(t^i)} P_\delta^{(i)}(k)$$

# Recover linear growth



But  $G_{\rho\rho}^{(0)}$  contains much more information, including mode-coupling effects!

What is the difference between KFT and SPT?

# Can KFT recover SPT results?

# KFT recover linear growth exactly if...

we expand initial conditions in terms of  $P_\delta^{(i)}$  to linear order!

$$Z[M] = e^{i\hat{S}_{\text{vertex}}} \int \mathcal{D}\psi e^{-\frac{1}{2}\psi \cdot D^{-1} \cdot \psi + iM \cdot \psi}$$

$$G_{\rho\rho} = D_{\rho\rho} + \underbrace{\text{terms involving vertices}}$$

$$D_{\rho\rho} = D_R \cdot G_{\rho\rho}^{(0)} \cdot D_A$$

$$G_{\rho\rho}^{(0)} \propto P_\delta^{(i)} + \underbrace{P_\delta^{(i)} P_\delta^{(i)}}_{+ \dots}$$

$$\Rightarrow P_\delta(k, t) = \frac{D_+(t)}{D_+(t^i)} P_\delta^{(i)}(k)$$

# Theory of cosmic structure formation

$$Z = \int \mathcal{D}\varphi P[\varphi]$$

## Kinetic Field Theory:

- Initial conditions for N-particle ensemble
- Particles and their dynamics
- Hamiltonian e.o.m.

$$\begin{aligned}\vec{q}(t) = & \vec{q}^{(i)} + g_{qp}(t, 0) \vec{p}^{(i)} \\ & + \int_0^t dt' g_{qp}(t, t') \vec{f}(t')\end{aligned}$$

# Theory of cosmic structure formation

$$Z = \int \mathcal{D}\varphi P[\varphi]$$

## Kinetic Field Theory:

- Initial conditions for N-particle ensemble
- Particles and their dynamics
- Hamiltonian e.o.m.

$$\begin{aligned}\vec{q}(t) = & \vec{q}^{(i)} + g_{qp}(t, 0) \vec{p}^{(i)} \\ & + \int_0^t dt' g_{qp}(t, t') \vec{f}(t')\end{aligned}$$

## Eulerian SPT:

- Averaged fields  $\rho$  and  $\mathbf{v}$
- Fluid equations

$$\partial_t \rho + \rho \theta + v^i \partial_i \rho = 0$$

$$\partial_t \theta + \partial_i (v^j \partial_j v^i) + 4\pi G \rho = 0$$

$$(\theta = \partial_i v^i)$$

single-stream approximation!

# Theory of cosmic structure formation

$$Z = \int \mathcal{D}\varphi P[\varphi]$$

## Kinetic Field Theory:

- Initial conditions for N-particle ensemble
- Particles and their dynamics
- Hamiltonian e.o.m.

$$\begin{aligned}\vec{q}(t) = & \vec{q}^{(i)} + g_{qp}(t, 0) \vec{p}^{(i)} \\ & + \int_0^t dt' g_{qp}(t, t') \vec{f}(t')\end{aligned}$$

## Eulerian SPT:

- Averaged fields  $\rho$  and  $\mathbf{v}$
- Fluid equations

$$\partial_t \rho + \rho \theta + \mathbf{v}^i \partial_i \rho = 0$$

$$\partial_t \theta + \partial_i (v^j \partial_j v^i) + 4\pi G \rho = 0$$

$$(\theta = \partial_i v^i)$$

single-stream approximation!

Derive statistical properties by functional derivatives

# Comparison of the perturbative expansion

## Kinetic Field Theory:

- For

$$\vec{q}(t) = \vec{q}^{(i)} + g_{qp}(t, 0) \vec{p}^{(i)}$$

$Z_{\text{KFT}}$  is exact.

- Free evolution contains non-linear effects due to initial correlations.
- Perturbative corrections are due to particle interactions.

# Comparison of the perturbative expansion

## Kinetic Field Theory:

- For

$$\vec{q}(t) = \vec{q}^{(i)} + g_{qp}(t, 0) \vec{p}^{(i)}$$

$Z_{\text{KFT}}$  is exact.

- Free evolution contains non-linear effects due to initial correlations.
- Perturbative corrections are due to particle interactions.

## Eulerian SPT:

- Linear theory describes the independent evolution of Fourier field modes (includes gravitational interactions).
- By construction (SSA) linear theory is not exact.
- Perturbative corrections arise due coupling of the field modes by non-linear advective terms.

# Comparison of the perturbative expansion

$$Z[M] = e^{i\hat{S}_{\text{vertex}}} \int \mathcal{D}\psi e^{-\frac{1}{2}\psi \cdot D^{-1} \cdot \psi + iM \cdot \psi}$$

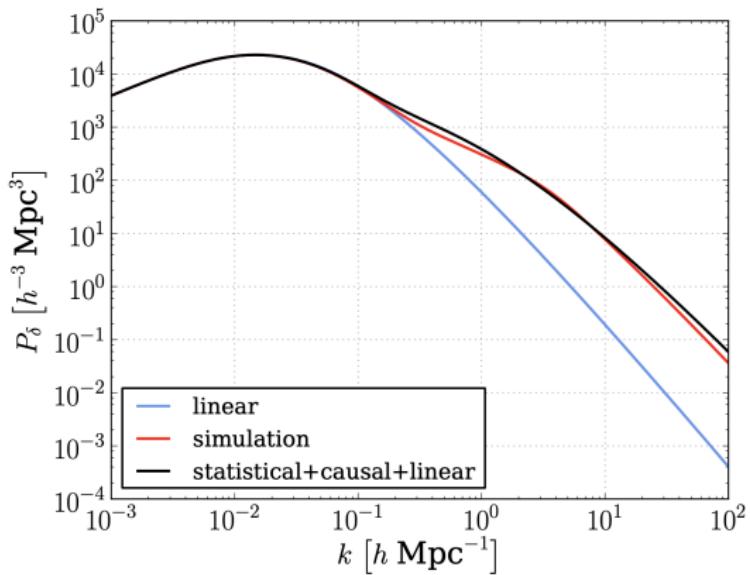
$$G_{\rho\rho} = D_{\rho\rho} + \text{terms involving vertices}$$

$$D_{\rho\rho} = D_R \cdot G_{\rho\rho}^{(0)} \cdot D_A$$

resummed propagators  $D_R$ ,  $D_A$  contain infinite orders of interactions!

# Recover 1loop SPT if...

we expand initial conditions in terms of  $P_\delta^{(i)}$  up to second order.



from R. Lilow, PhD thesis

- By construction, KFT contains a complete resummation of the advective kinematics in the free-streaming regime.

- By construction, KFT contains a complete resummation of the advective kinematics in the free-streaming regime.
- To recover SPT results we have to neglect higher-order correlations.

- By construction, KFT contains a complete resummation of the advective kinematics in the free-streaming regime.
- To recover SPT results we have to neglect higher-order correlations.
- Does this pattern continue?

Is it possible to implement modified gravity theories in the KFT framework?

# How to modify gravity

modified Poisson equation

$$\nabla^2 \Psi = \frac{a^2}{2} \left( 1 + \frac{\Delta G_{\text{eff}}}{G} \right) \kappa^2 \delta \rho_m$$

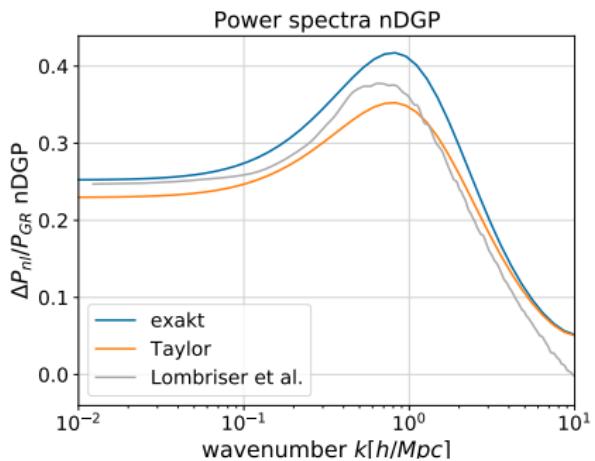
use parametrisation

$$\frac{G_{\text{eff}}}{G} = A + \sum_i^{N_0} B_i \prod_j^{N_i} b_{ij} \left( \frac{r}{r_{0ij}} \right)^{a_{ij}} \left\{ \left[ 1 + \left( \frac{r_{0ij}}{r} \right)^{a_{ij}} \right]^{1/b_{ij}} - 1 \right\}$$

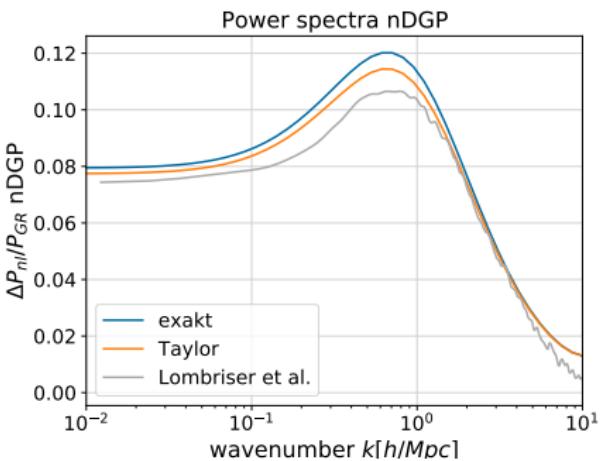
Lombriser et al. 2016

# nDGP in the mean-field approximation of KFT

$$r_c = 0.5, k_* = 1.0$$



$$r_c = 2.0, k_* = 0.8$$



from N. Reinhardt, Master thesis 2023