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Motivation & Background
Bayesian forward modeling of

galaxy surveys




‘ The limits of summary statistics
Traditionally cosmic structures are analyzed via summary statistics (mostly 2PT).
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There exists no closed form description of the 3D matter distribution:

e The hierarchy of statistical moments is not guaranteed to close (e.g. Carron & Neyrinck 2012)

‘ Should we rather use the entire field to do cosmology?



https://ui.adsabs.harvard.edu/abs/2012ApJ...750...28C/abstract

‘ Beyond summary statistics: Field level inference
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e Field level data assimilation (DA) technique,

e.g. Bayesian forward modeling, BORG
Leclercq & Heavens 2021



https://ui.adsabs.harvard.edu/abs/2021arXiv210304158L/abstractJ/abstract

‘ Beyond summary statistics: Field level inference
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Field level inference uses many more constraints of the data! Leclercq & Heavens 2021
(higher-order statistics)

(Also see McQuinn (2021))


https://ui.adsabs.harvard.edu/abs/2021arXiv210304158L

‘ BORG: Bayesian Physical forward modeling

Prior model Structure formation model Data model
e~ 2 —STS e—Ai )\N‘
P(s|S) = Jdet@n 5) ﬁ P(d|s) = H5D (6; — Gi(8)) “ P(NIX(9)) = | N

Galaxy bias model

See e.g. Neyrinck et al. 2014

Lavaux & Jasche 2016
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‘ BORG: Bayesian Physical forward modeling
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‘ BORG: Bayesian Physical forward modeling

BORG’s MCMC framework allows building flexible data models

e Hierarchical Bayes and block sampling
e Efficient Hamiltonian Monte Carlo technique
e Fully differentiable physics forward model
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https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract

‘ BORG: Bayesian Physical forward modeling

BORG’s MCMC framework allows building flexible data models

e Hierarchical Bayes and block sampling
e Efficient Hamiltonian Monte Carlo technique
e Fully differentiable physics forward model

Now A gamnle

4 First differentiable cosmological structure formation model

e LPT and 2LPT (now PM and COLA).

e entirely written by hand (no auto-diff)
Jasche & Wandelt 2013

k Jasche & Wandelt 2014
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https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract

‘ Bayesian Physical forward modeling

Bayesian physical forward model
mmp Constrain primordial ICs

(1-2) Structure formation

4 Veloc1ty COSIIIIC |
ﬁeld expansmn )
(3-5) Redshift transform
1 Initial 2 Evolved 3 Galaxy field 5 Galaxy field 6 Selection - 7  Observed
conditions density field (comoving) (redshift) & Likelihood - galaxy distribution

(2-3) Galaxy bias (3—-4) Peculiar velocities - RSDs Likelihood/posterior analysis

Jasche & Wandelt 2014

Wang et al 2014
: : Jasche, Leclercg, Wandelt 2015
Now several groups are developing Forward Modeling approaches. |2°- =2 ra5016

Jasche & Lavaux 2019
Kitaura et al 2021
Ata et al 2022

Kostic et al. 2022



https://ui.adsabs.harvard.edu/abs/2022A%26A...657L..17K/abstract
https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract
https://ui.adsabs.harvard.edu/abs/2015JCAP...01..036J/abstract
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.3169L/abstract
https://ui.adsabs.harvard.edu/abs/2022NatAs...6..857A/abstract
https://ui.adsabs.harvard.edu/abs/2021MNRAS.502.3456K/abstract
https://ui.adsabs.harvard.edu/abs/2014ApJ...794...94W/abstract

T ™rT
L s ¥ L .
P “ . - .. L

‘ Bayesian forward modeling of the 2M++ galaxy compilation (3J + Guilhem Lavaux)
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https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract

Jasche & Lavaux 2019



https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract

Measuring Cluster Masses

How rare is the local super volume?

02




How rare is the local super volume? (Stephen Stopyra)

Local super-volume: large clusters (halos) within 135 Mpch ™!
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https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5425S/abstract

‘ How rare is the local super volume? (Stephen Stopyra)

Mass estimates of clusters in the local super-volume (r < 135 Mpch™1) . Escalera et al. (1994)

: Rines et al. (2003)

: Woudt et al. (2007)

: Kubo et al. (2007)

: Kubo et al. (2009)

: Gavazzi et al. (2009)

: Piffaretti et al. (2011)

: Simionescu et al. (2011)

: Kopylova & Kopylov (2013)
10: Babyk and Vavilova (2013)
11: Okabe et al. (2014)

12: Planck Collaboration (2016b)
13: Sereno et al. (2017)

14: Lopes et al. (2018)

15: Meusinger et al. (2020)
16: Aguerri et al. (2020)
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An intriguing situation: Is the local super-volume compatible with ACDM or not?
Stopyra et al 2021



https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5425S/abstract

‘ How rare is the local super volume? (Stephen Stopyra)

Prevalence of most massive nearby halos:
e Likelihood of finding N clusters with

Mo00c = 1015M@h_1

Né\){ e_Nexp %mi
p 2
L(NlNexp) — N <
with N_ = 1, E

exp

e A few high-mass halos can pose a

significant challenge to ACDM.
Frenk et al 1990

100

Halo counts within 135 Mpch~! radius spheres

1 —— Poisson Distribution, Ney, = 0.49
3 All regions

1 2 3 4 ) 6
Number of halos, Mygoc = 101°Moh 1

Stopyra et al 2021



https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5425S/abstract
https://ui.adsabs.harvard.edu/abs/1990ApJ...351...10F/abstract

‘ Required simulator accuracy for Massive Cosmic Structures inference (Stephen Stopyra)
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https://ui.adsabs.harvard.edu/abs/2023arXiv230409193S/abstract

‘ Required simulator accuracy for Massive Cosmic Structures inference (Stephen Stopyra)
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https://ui.adsabs.harvard.edu/abs/2023arXiv230409193S/abstract

‘ Required simulator accuracy for Massive Cosmic Structures inference (Stephen Stopyra)
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https://ui.adsabs.harvard.edu/abs/2023arXiv230409193S/abstract

Testing cosmology
inferring cosmological parameters




‘ Bayesian forward modeling of Primordial Non-Gaussianity Non-Gaussianity (Adam Andrews)

Forward model Likelihood

redicted
alaxy counts

Evolved non-linear ) 5
.density field .RSD, light-cone .g

Scale dependent

latent space:
Gaussian prior

bias

Andrews et al. 2022



https://ui.adsabs.harvard.edu/abs/2022arXiv220308838A/abstract
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‘ Physical forward modeling of PNG at the level of 3d fields (Adam Andrews)

2000

SDSS3 Mock analysis: Primordial fluctuations field inference from galaxy mock data
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https://ui.adsabs.harvard.edu/abs/2022arXiv220308838A/abstract

‘ Physical forward modeling of PNG at the level of 3d fields (Adam Andrews)

SDSS3 Mock analysi ' istributi
ock analysis Posterior Distribution of fy
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Current state-of-the-art (SDSS3): f =-30 £ 29 (D'Amico etal 2022)

Andrews et al. 2022



https://ui.adsabs.harvard.edu/abs/2022arXiv220308838A/abstract
https://ui.adsabs.harvard.edu/abs/2022arXiv220111518D/abstract

‘ Physical forward modeling of PNG at the level of 3d fields (Adam Andrews)

Higher resolution of density reconstructions improves PNG constraints.
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https://ui.adsabs.harvard.edu/abs/2022arXiv220308838A/abstract

‘ Physical forward modeling of PNG at the level of 3d fields (Adam Andrews)

BORG provides full statistical control
Covariance matrices of all parameters

of the data model

Marginalizing out nuisance parameters

BORG handles various effects

Survey Geometries
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https://ui.adsabs.harvard.edu/abs/2022arXiv220308838A/abstract

Non-linear biases
connecting DM fields with observables




‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!

Dark matter
over-density

From approximate

simulators
e.g. 2LPT

Physics

informed
ML

Fast & Differentiable
Stochastic
Explainable

17-32 parameters

halo catalog

prediction

Validation:
e Ipt
o 2pt
o field-level
Ding et al in prep
Charnock et al 2020



http://www.iap.fr/recherche/groupes/groupes-3.php?nom=grandestruct&langue=en
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494...50C/abstract

‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!

ces®
qeratve pre
.Ge

Sampling Distribution

0m(z)> Convolve> Transform> Sample> n(M|d,,(z))

Ding et al in prep
Charnock et al 2020

credit for slide: Simon Ding
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‘ Neural Physical Engine (NPE) (Simon Din{

Preliminary Work!

0m(z)> Convolve> Transform> Sample> n(M|d,,(z))

Ding et al in prep
Charnock et al 2020

credit for slide: Simon Ding


http://www.iap.fr/recherche/groupes/groupes-3.php?nom=grandestruct&langue=en
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494...50C/abstract

‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!
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Conditional halo mass function for 6(x) = 8.62
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http://www.iap.fr/recherche/groupes/groupes-3.php?nom=grandestruct&langue=en
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494...50C/abstract

‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!

credit for slide: Simon Ding
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‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!

credit for slide: Simon Ding
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http://www.iap.fr/recherche/groupes/groupes-3.php?nom=grandestruct&langue=en
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494...50C/abstract

‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!

credit for slide: Simon Ding
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‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!

credit for slide: Simon Ding
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‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!

credit for slide: Simon Ding
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‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Preliminary Work!

credit for slide: Simon Ding
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‘ Neural Physical Engine (NPE) (Simon Ding, Tom Charnock)

Power spectrum comparison at 10.0 Mpc/h voxel resolution

Preliminary Work!
for halo masses between 3.00e + 12M, and 9.49e + 12M 4

—— ground truth
--- prediction (mean)
prediction (std)

104 ]

P(k) [h—3*Mpc3]

103 ]

10
k [h Mpc™] Ding et al in prep
Charnock et al 2020

credit for slide: Simon Ding
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SIBELIUS-Dark
Posterior simulations of the Universe




‘ SIBELIUS-DARK: a constrained simulation of the local volume (Stuart McAlpine)

30° 30°

15°
Lo 1507 “i20; 00" Y
LA : /

Re-simulate our Nearby Universe (d<200 Mpc) e

-15 =15~

-30° -30° 9§

Constrained Initial conditions a5
e BORG constraints at scales >3.9 Mpc
e Random fluctuations at scales < 3.9 Mpc
e Add local group candidate

Simulation setup

e SWIFT simulation code (schaller et al 2018)

e Dark Matter Only (DMO)

e L=1Gpc

e “Zoom-in” simulation for the inner 200 Mpc
° Np3 = 50783

([ J

4489 compute cores and 3.5M CPU hours

McAlpine et al 2022



https://ui.adsabs.harvard.edu/abs/2022MNRAS.tmp..348M/abstract
https://ui.adsabs.harvard.edu/abs/2018ascl.soft05020S/abstract

‘ SIBELIUS-DARK: a constrained simulation of the local volume (Stuart McAlpine)

13h 12h 13h 12h

10,000 km/s

de Lapparent 1986 McAlpine et al 2022



https://ui.adsabs.harvard.edu/abs/2022MNRAS.tmp..348M/abstract
https://ui.adsabs.harvard.edu/abs/1986ApJ...302L...1D/abstract

‘ SIBELIUS-DARK: a constrained simulation of the lo

Posterior predictive tests with GALFORM (Lacey et al 2016)

Use GALFORM to predict semi-analytic galaxies:
e SIBELIUS-DARK has a high cadence
(200 ‘snapshots’ from 0 <z < 25)
e Generate Halo catalogs and Merger trees
(22,904,767 halos with mass M >10 MQ)
e Populate Halos with Galaxies

e Account for dust extinction and emission

n(m) [Nga1 / sq deg]

n(z) [Nga1 / sq deg]
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Redshift MCAIpine et al 2022



https://ui.adsabs.harvard.edu/abs/2016MNRAS.462.3854L%2F/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.tmp..348M/abstract

‘ SIBELIUS-DARK: a constrained simulation of tI  1.00 g

0.75
A local underdensity of 20% of size 150-200 h' Mpc ¢ ”
could alter reported values of H, by 5%. >§j 025
g 0.00
e A 20% large scale underdensity in the galaxy I —0.25
distribution has been reported (see e.g. Whitbourn & & 00
Shanks 2014, Bohringer et al 2020, Wong et al 2021). o
e Such an underdensity is unlikely in a ACDM T%0 Tz 50 15 10 1 150 175 200
Universe (e.g. Wu & Huterer 2017, Castello et al 2021). _———— -C!lM-W- Mpe —
0.4 F i mmm= Sibelius-DARK 4
g ACDM 1o
. 3 0.2 | ACDM 20
SIBELIUS-DARK finds: = ACDM 30
e No exceptionally large-scale under-density ¢
required to reproduce observed galaxy counts. |
e There is a slight 5% underdensity. <
e Rare but no challenge for ACDM. g
| Cumulativejradial density profile
0 100 200 300 400 500

darw [Mpc] McAlpine et al 2022



https://ui.adsabs.harvard.edu/abs/2022MNRAS.tmp..348M/abstract
https://ui.adsabs.harvard.edu/abs/2014MNRAS.437.2146W/abstract
https://ui.adsabs.harvard.edu/abs/2014MNRAS.437.2146W/abstract
https://ui.adsabs.harvard.edu/abs/2020A%26A...633A..19B/abstract
https://ui.adsabs.harvard.edu/abs/2021arXiv210708505W/abstract
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.4946W/abstract
https://ui.adsabs.harvard.edu/abs/2021arXiv211004226C/abstract

‘ SIBELIUS-DARK: a constrained simulation of the local volume (Stuart McAlpine)

The Local Environment

e

Fornaxi

SIBELIUS-DARK:
is the most comprehensive simulation of the local volume to date.
(For comparison see: Held et al 2013, Wang et al 2016, Libeskind et al 2020, Sorce et al 2021)

SIBELIUS-DARK data is available at:
https://virgodb.dur.ac.uk

McAlpine et al 2022


https://ui.adsabs.harvard.edu/abs/2022MNRAS.tmp..348M/abstract
https://virgodb.dur.ac.uk/
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.2065H/abstract
https://ui.adsabs.harvard.edu/abs/2016ApJ...831..164W/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.2968L/abstract
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.2998S/abstract

Reconstructing anisotropies in the
neutrino sky
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‘ Reconstruction of anisotropies in the neutrino sky (Willem Elbers)

Preliminary Work!

PTOLEMY: detect CNB by capturing neutrinos through tritium inverse 3-decay.
e Event rate depends on the local neutrino number density.
® Some experiments require the dipole moment and consider the velocity of neutrinos in the lab frame.

@ B-decay of tritium

PTOLEMY collaboration 2019



https://ui.adsabs.harvard.edu/abs/2019arXiv190205508P/abstract

‘ Reconstruction of anisotropies in the neutrino sky (Willem Elbers)

a

Preliminary Work! = p”/’_’;3
Goal: Determine the prospects of CNB detection
1.15
® Posterior simulations to jointly model the evolution of
large-scale structures and the neutrino background. 1
® Non-linear treatment of massive neutrinos, including
the gravitational effects of the neutrinos themselves. 0.85

e Full scale large-scale distribution of matter within
200h_1 MpC 180° pcb/ﬁcb

2
e Compute the expected density, velocity, and direction 1
of relic neutrinos, as well as expected event rates for
PTOLEMY. 10
§ = 10°
107!

0 r [Mpc)
Elbers et al in prep



https://www.durham.ac.uk/staff/willem-h-elbers/

‘ Reconstruction of anisotropies in the neutrino sky (Willem Elbers)
ACDM

10~1
Scale k [Mpc_1 ]

Pey (k) /P "M (k)

1.3 N

1.2

1.1F

09§

0.8

vACDM

ACDM 10 ——0.06eV -
ACDM 20 ——0.15eV

— (0.30eV
— (0.45eV
— (0.60eV

10~
Scale k [Mpc_1 ]

Elbers et al in prep
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‘ Reconstruction of anisotropies in the neutrino sky (Willem Elbers)

Preliminary Work!

Monopole perturbation Dipole perturbation
1 500 T
— LSS
0.8 — LSS + MW ) 400
IS E
X 04 v
S — 200
I S
. 0.2
S 100
0
0
—0.2 ‘ ‘ ‘
0 0.05 0.1 0.15 02 0 0.05 0.1 0.15 0.2
Mass m,, [eV] Mass m,, [eV]

Elbers et al in prep
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‘ Reconstruction of anisotropies in the neutrino sky (Willem Elbers)

Preliminary Work!

Mass m, wv, [km/s] I b

CMB 0 264° 48°

0.01eV 485+ 1.5 267°4+3.1° 48.7° £0.8°
0.05eV 211 £4.3 298° £ 2.5° 48.1° £1.5°
0.06 eV 235+ 5.0 302°+2.6° 48.0° £1.8°
0.10eV 311 9.0 311°+£3.0° 47.5° 1L 2.9°
0.15eV 371 £+ 14 318° £+£3.2° 46.6° £ 4.0°
0.20eV 415 = 20 322° +£3.2° 45.5° £4.9°
Matter 484 + 88 344° & 11°  43° £ 17°

Elbers et al in prep
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‘ Reconstruction of anisotropies in the neutrino sky (Willem Elbers)

Preliminary Work!

Predicted number of events per year for PTOLEMY

(LSS) (LSS + MW)

>_my  Ordering FgNB FJ(\Z/INB FgNB I ](\3/[NB
0.06eV (NO) 6.86 +=0.002 8.11 +£0.004 6.87+0.002 &.12+0.004
0.10eV (IO 4.33+0.04 8524+0.11 4.454+0.05 890+0.12
0.15eV (D) 4244+0.05 853+0.12 4374+0.05 892+4+0.13
0.30eV (D) 4.56+0.13 9.07+0.26 5.16+0.14 10.3+0.29
0.45eV (D) 486+0.22 9.704+0.44 6.264+0.27 12.54+0.54
0.60eV (D) 510+ 0.32 10.2+0.63 7.61+0.44 15.24+0.88

Elbers et al in prep
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‘ Reconstruction of anisotropies in the neutrino sky (Willem Elbers)

Preliminary Work!

Angular distribution of neutrinos

® Anti-correlated with the projected matter

density,
® Capture and deflection of neutrinos by

massive structures along the line of sight.

Angular anisotropies in the local neutrino background density

m, = 0.01eV

Projected matter density

¢ J
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Elbers et al in prep
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‘ Reconstruction of anisotropies in the neutrino sky (Willem Elbers)

Preliminary Work! Neutrino mass density p,/p, Dark matter mass density pcb/pcb
0.85 1.0 1.15 1.30 1071 100 101 102
[ | I
200
Hergules Hergules
100
2 Comakly Virgo 1% Pegasus I Comé--- Virgo, Tisces Pegasus 11
E 0 “Leo "4— ~Leo "4 ,
= Cancer - Per:.;eus Cap(:er ¢ ,Per.seus
—100
—200
—200 —100 100 200 —200 —100 100 200
. . x [ Mpc x |[Mpc
Data will be public [ Mpe] [Mpe]

2 x 9 x 6 simulation files, corresponding
e 2 with and without Milky Way,
e 9 different posterior realizations
e 6 different neutrino masses.

Elbers et al in prep
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‘ Summary & Conclusion

Physical forward modeling and field-level inference
e Goes beyond summary statistics
e Utilizes all of the data
e Performs causal inferences

Improved inferences
9 e tight constraints of cosmological parameter
e Cluster mass measurements and large scale structure environments

e Detailed insights into galaxy formation

Outlook and work needed
k) e Small-scale galaxy biasing
Improving inference speed using ML

Scaling to next-generation galaxy surveys and data volumes
A complete and joint characterization of the LSS phenomenology
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https://aquila-consortium.org/

Constraining Fundamental Physics
Turning the Universe into a lab




‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)

Fermi Gamma-ray Space Dark Matter ~ 1
Telescope

All-sky Gamma-ray map

Dark Matter

(Image credit: NASA/DOE/Fermi LAT Collaboration)



‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)

Dark Matter annihilation Dark Matter decay

— —
Tet+11 (J)[GeV=em™] le-+15 1415 (D)[GeV em™] le+16
dJ dD

a0 /P%M (s,82)ds FOE /PDM (s,82)ds

Bartlett et al 2022
Cuesta et al 2011



https://ui.adsabs.harvard.edu/abs/2022arXiv220512916B/abstract
https://ui.adsabs.harvard.edu/abs/2011ApJ...726L...6C/abstract

‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)
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‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)
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‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)
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‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)
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‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)
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‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)
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‘ Constraining dark matter annihilation and decay (Deaglan Bartlett & Andrija Kostic)

IIIlllI 1 1 Illllll 1 1 1 IIIlllI 1 1 llllllI 1 1 1

20.0 1 B B .
— bb ((ov) =3 x 107 cm®s~!, m, = 100 GeV/c?) — bb (T =3x10"2s71, m, = 100GeV/c?)
17.5 4 20.07 Power law (Ap = 4.1 x 107 cm™?s7'MeV ™, p = —2.75)
— ini i — ]_ 9 I
e DM annihilation : 7.5 DM decay
w < c\;l:
b L 18,00
B 12.5 §
E § 12.5
'c‘_la 10 0 i 3
IS 12 10.0 1
N s
R 5.0 N 5q-
2.5 2.5
00 = 0 0 | ‘
103 104 103 10%
E; /| MeV E; /| MeV

e We find gamma ray sky contributions correlating spatially with dark matter decay at 3.30.

e However, a power-law spectrum likely of baryonic origin, is preferred by the data.

Bartlett et al 2022
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‘ Testing Equivalence Principle Violations (Deaglan Bartlett)

Shapiro time delay - constrain PPN parameter y

ds? = — (1 +2¢) dt* + a* (1) (1 — 2y¢) dF?

Cassini (y—1)=(-0.8+1.2) x 10* Bertotti et al 2003

VLBI (y - 1) < (—2_1 + 2_3) x 105 Titovetal 2018

Bergsdal et al (2019), Bartlett et al 2021



https://ui.adsabs.harvard.edu/abs/2021PhRvD.104h4025B/abstract
https://www.nature.com/articles/nature01997
https://www.aanda.org/articles/aa/full_html/2018/10/aa33459-18/aa33459-18.html#R22

‘ Testing Equivalence Principle Violations (Deaglan Bartlett)

Shapiro time delays predicted by BORG SDSS Ill DR12 reconstruction
z=0.1

(R) / 10 g Bergsdal et al (2019), Bartlett et al 2021
Lavaux et al. 2020



https://ui.adsabs.harvard.edu/abs/2021PhRvD.104h4025B/abstract
https://ui.adsabs.harvard.edu/abs/2019arXiv190906396L/abstract

‘ Testing Equivalence Principle Violations (Deaglan Bartlett)

Assume the PPN parameter y to depend on Energy E:

tgra(’}/) — 1 i ’7 / ¢O

If EP is violated then:

. Photons of different Energy have different travel times: 71
12 _ Y(E1) —v(E»)
Aty = / $o(r)D(z)dr = Ay"*IL0s

Bergsdal et al (2019), Bartlett et al 2021



https://ui.adsabs.harvard.edu/abs/2021PhRvD.104h4025B/abstract

‘ Testing Equivalence Principle Violations (Deaglan Bartlett)

Use Gamma Ray Bursts (GRBs):
e immensely energetic explosions (e.g. SNe, black holes)

e can last from ten milliseconds to several hours.
Time delay data (e.g. GRBs)

160 -

Time arrival data for 4 energy channels
Ch1:25 -60 keV

140 A

120 -

.60 - 110 keV s
Ch 3: 110 - 325 keV S o
Ch4:>325 keV S
Yu et al (2018, ApJ) wl

0 2 - 6 8 10 12
Z

Equivalence Principle: All photons, irrespective of their energy, should arrive simultaneously!



‘ Testing Equivalence Principle Violations (Deaglan Bartlett)
Inferred EP violation
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(Also see Nusser (2016), Yu (2018)) Bartlett et al 2021
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Summary: Current data science capabilities of Aquila

Currently supported data

\4

Vs

Galaxy clustering data

Generated data products----+

: «

Vs

Cosmic shear data

Vs

Velocity tracer data

s

-

Lyman-a data

“ A

Bayesian forward modeling
Modeling the data e2e at the
field level

\

)

BORG provides:
Inference of 3d initial conditions
Full dynamical characterization of cosmic structures
Improved cosmological parameter inferences
Rigorous Bayesian uncertainty quantification

Galactic




‘ BORG + Deep learning Field-Level Emulator (Ludvig Doeser, Drew Jamieson)
Preliminary

e Differentiability
e Accuracy
e Speed

Likelihood

Forward model

64 channels

P f’ﬁ-"
VeoWeolW ——
P PP

Styled-VNET

Drew J. et al. (2022): https://arxiv.org/pdf/2206.04594



https://arxiv.org/pdf/2206.04594

‘ BORG + Deep learning Field-Level Emulator (Ludvig Doeser, Drew Jamieson)

Preliminary
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Doeser et al in prep



‘ BORG + Deep learning Field-Level Emulator (Ludvig Doeser, Drew Jamieson)
Preliminary
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‘ BORG + Deep learning Field-Level Emulator (Ludvig Doeser, Drew Jamieson)
Preliminary
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‘ Bayesian forward modeling of the 2M++ galaxy compilation (3J + Guilhem Lavaux)
96. 77 [Mpc/h] <1< 106.45 [Mpc/h]

Peculiar velocities! Jasche & Lavaux 2019



https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract

‘ Bayesian forward modeling of the 2M++ galaxy compilation (3J + Guilhem Lavaux)

Perseus Pisces.

.
s
-, -
L

Galactic

-1
Velocity vorticity field! Jasche & Lavaux 2019



https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract

Neural Emulator
Speeding up simulations




‘ BORG + Deep learning Field-Level Emulator (Ludvig Doeser, Drew Jamieson)
Preliminary

e Differentiability
e Accuracy
e Speed

Likelihood

Forward model

64 channels

P f’ﬁ-"
VeoWeolW ——
P PP

Styled-VNET

Drew J. et al. (2022): https://arxiv.org/pdf/2206.04594
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‘ BORG + Deep learning Field-Level Emulator (Ludvig Doeser, Drew Jamieson)

Preliminary
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‘ BORG + Deep learning Field-Level Emulator (Ludvig Doeser, Drew Jamieson)
Preliminary

P(k) [Mpc/h]?
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‘ BORG + Deep learning Field-Level Emulator (Ludvig Doeser, Drew Jamieson)
Preliminary
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Photometric redshift sampling

inferring cosmic structures next-gen surveys
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‘ Physics-informed Bayesian correction of photometric redshifts (Eleni Tsaprazi)

Galaxies trace the cosmic structure
data
1. Infer 3D density field
2. Update Galaxy positions
( redshift W
1 sampling J
new new
density sample redshift samples
( density )
sampling
* ICs

Jasche & Wandelt 2012
Tsaprazi et al 2023



https://ui.adsabs.harvard.edu/abs/2023arXiv230103581T/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.1042J/abstract

‘ Physics-informed Bayesian correction of photometric redshifts (Eleni Tsaprazi)
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https://ui.adsabs.harvard.edu/abs/2023arXiv230103581T/abstract

‘ Physics-informed Bayesian correction of photometric redshifts (Eleni Tsaprazi)

(a) (b) (c)
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https://ui.adsabs.harvard.edu/abs/2023arXiv230103581T/abstract

‘ Physics-informed Bayesian correction of photometric redshifts (Eleni Tsaprazi)
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https://ui.adsabs.harvard.edu/abs/2023arXiv230103581T/abstract

‘ Physics-informed Bayesian correction of photometric redshifts (Eleni Tsaprazi)
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https://ui.adsabs.harvard.edu/abs/2023arXiv230103581T/abstract

‘ Bayesian forward modeling of the 2M++ galaxy compilation (JJ + Guilhem Lavaux)

A numerical cosmic structure posterior distribution

Movie credit: Florent Leclercq Leclercq et al 2017
Jasche & Lavaux 2019



https://docs.google.com/file/d/11fl_agccOyFr2VEAa233d1bifikhb1WI/preview
https://ui.adsabs.harvard.edu/abs/2019A%26A...625A..64J/abstract
https://ui.adsabs.harvard.edu/abs/2017JCAP...06..049L/abstract

